
 Herakles

©2009 Siemens IT Solutions and Services -1/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Global technical specification

Herakles
Herakles – Eos - Prométhée

(PR1 – PR2)
Release 1 – Personne

Release 2 – Marchandise

Accepted by:

Customer: SPF Finances,
Decision Maker

Siemens Siemens,
Decision Maker

Representative
SPF Finance:

Veronique Vandamme –
Program Manager

Representative
Siemens:

Stefan Verplaetse –
Program Manager

Date + Signature: N/A Date +
Signature:

 Herakles

©2009 Siemens IT Solutions and Services -2/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

T A B L E O F C O N T E N T S

1. INTRODUCTION .. 7
1.1. OBJECTIVES.. 7
1.2. MOTIVATION .. 7
1.3. TARGET AUDIENCE... 7
1.4. SCOPE... 7
1.5. EVOLUTION... 8
1.6. PREREQUISITES...8
1.7. REFERENCES... 9
1.8. LIST OF ACRONYMS.. 10

2. ARCHITECTURAL OVERVIEW ... 11

3. TECHNICAL COMPONENTS... 13
3.1. STORAGE.. 15

3.1.1. General overview.. 15
3.1.2. Databases ... 16

3.1.2.1. Staging Area Framework Repository ..16
3.1.2.1.1. Design time repository (SAD) tables ...16
3.1.2.1.2. Run time repository (SAR) tables ..22
3.1.2.1.3. DB2 Sequences ..28

SCTKGenerator...28
3.1.2.2. Datawarehouse ..29

3.1.2.2.1. Adding technical fields...29
3.1.2.2.2. Primary keys ..30
3.1.2.2.3. Referential integrity ...30
3.1.2.2.4. Indexing strategy..30

loadDWHPreprocessing.sh - loadDWHPreProcessing.tpl...30
loadDWHPostprocessing.sh - loadDWHPostProcessing.tpl..31

3.1.3. File Systems .. 32
3.1.3.1. Ftp zone...32
3.1.3.2. Landing Zone ..32
3.1.3.3. Staging Area ..32

3.1.3.3.1. Herakles Working Directory ..32
3.1.3.3.2. Signatures Directory...32
3.1.3.3.3. Jobs directory ...32
3.1.3.3.4. Staging Area Outbox..34
3.1.3.3.5. bin directory ...34
3.1.3.3.6. etc directory..34
3.1.3.3.7. sql directory..35
3.1.3.3.8. tmp directory..35
3.1.3.3.9. log directory ...35
3.1.3.3.10. arc directory ...35

3.2. CONTROL.. 36
3.2.1. Herakles Master Scheduler... 36
3.2.2. Ftp-zone scheduler.. 36
3.2.3. Herakles scheduler ... 36

3.2.3.1. Standards ...38
3.2.3.1.1. Naming Conventions..38
3.2.3.1.2. Visualisation...38
3.2.3.1.2.1. Valeurs des Noeuds...38
3.2.3.1.2.2. Valeurs par défaut des liens...38

3.2.3.2. Creation of the VTOM environment ...38
3.2.4. Sequence starter and monitoring .. 45

seqVtom.sh ..45

 Herakles

©2009 Siemens IT Solutions and Services -3/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.2.4.1. Detailed Operational en functional monitoring ...45
3.3. PROCESSING.. 47

3.3.1. General overview.. 47
3.3.2. Processing framework .. 47

3.3.2.1. Technical grouping of job types ..47
3.3.2.1.1. Sequence level 1...48
3.3.2.1.2. Sequence level 2...48
3.3.2.1.3. Sequence level 3...49
3.3.2.1.4. Sequence level 4...49

3.3.2.2. Error handling and execution tracing...50
SEQ_TECH_WATCHDOG..52
getRunID.sh...54
GetJobInfo ...55
GetJobEndTime...55
InitUserStatus ..56
GetUserStatus..56
SetUserStatus...56
TECH_TRACE_RUN ...57
SCErrorLog ...58
SCSQLErrorLog..60
EH_Handler...61

3.3.2.2.1. Record count tracing ..61
recordCounting.sh ...61

3.3.2.3. Data passing between jobs...62
createCounterList.sh..62
createFileCounterList.sh..63

3.3.2.4. Stateful jobs...64
moveNew2Current.sh..64
moveCurrent2New.sh ..64

3.3.2.5. Evaluators..64
3.3.2.5.1. TECH_EVAL_INIT_REF ...65
3.3.2.5.2. TECH_EVAL_INTAKE..66
3.3.2.5.3. TECH_EVAL_LOAD..67
3.3.2.5.4. TECH_EVAL_LOAD_TABLE...69
3.3.2.5.5. TECH_EVAL_LOAD_TABLE_TARGET ...71
3.3.2.5.6. TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE_GENERAL ..73
3.3.2.5.7. TECH_EVAL_TARGET_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE ..74
3.3.2.5.8. TECH_EVAL_LOAD_NOSRC ..75
3.3.2.5.9. TECH_EVAL_TARGET_TRANSL..77
3.3.2.5.10. TECH_EVAL_TARGET_LOAD_SA...79
3.3.2.5.11. evalLoadDWH.sh...81
3.3.2.5.12. TECH_EVAL_TARGET_LOAD_DWH_REF ...82

3.3.2.6. Consolidators...83
3.3.2.6.1. TECH_CONSOL_INTAKE...83
3.3.2.6.2. TECH_CONSOL_LOAD ..85
3.3.2.6.3. TECH_CONSOL_LOAD_TABLE..87
3.3.2.6.4. TECH_CONSOL_ALL_COND ..89
3.3.2.6.5. consolLoadDWH.sh ...91

3.3.2.7. Synchronisation ...92
3.3.2.7.1. SA Outbox – SA ..92

evalOutbox2SA.sh...92
consolOutbox2SA.sh ...93

3.3.2.7.2. SA Outbox – DWH ..94
evalOutbox2DWH.sh ..94
consolOutbox2DWH.sh...95
moveSA2OutboxTransl.sh...96
moveSA2OutboxLoadSA.sh ...97

3.3.2.8. Cleaning ..98
3.3.2.8.1. clean.sh...98
3.3.2.8.2. cleanSARTable.sql...98

3.3.3. Landing zone... 99
3.3.3.1. INTAKE..99

moveFtp2Landing.sh ...100

 Herakles

©2009 Siemens IT Solutions and Services -4/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.4. Staging Area ... 101
3.3.4.1. EXTRC_SRC ..101

existSignatureInstance.sh...109
3.3.4.2. TRANSL ...116
3.3.4.3. TRANSF_SRC ..130
3.3.4.4. LOAD_SA...135

removeTmpDataset.sh ...146
TECH_CONCAT / TECH_CONCAT_MULTIPLE ...146

3.3.5. Datawarehouse... 147
3.3.5.1. LOAD_DWH ..147

3.4. CONFIGURATION AND ROLL-OUT .. 161
createFrameworkDirs.sh..165

 Herakles

©2009 Siemens IT Solutions and Services -5/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Document history

Version State / Modifications Date Author

00.01 First draft 01/10/2007 A. D’haene, A. Van De
Velde, C. Le Gall, C.
Scheers, D. Defourny,
J.-L. Lejeune, S.
Timmermans

01.00 Version after internal quality review 22/02/2008 A. D’haene, A. Van De
Velde, C. Le Gall, C.
Scheers, D. Defourny,
J.-L. Lejeune, S.
Timmermans

01.01 Version updated on the basis of the received remarks
and questions

30/05/2008 A. D’haene, A. Van De
Velde, C. Scheers, D.
Defourny, J.-L. Lejeune,
S. Timmermans

02.00 Version updated with extensions of Eos iteration 2:

- externalisation via a project parameter of the
number of readers used to read a flat file in
PRTRT jobs.

- externalisation via a project parameter of the row
commit used when updating the database in
LOAD_DWH jobs.

- reorganisation of the TRANSL sequences:

- processing for all load ids together instead of
per load id to improve the performance. This
implies the addition of an evaluator
TECH_EVAL_TARGET_TRANSL and the
usage of the consolidator
TECH_CONSOL_ALL_COND.
TECH_EVAL_LOAD_NOSRC,
TECH_EVAL_LOAD_TARGET_TRANSL and
TECH_CONSOL_LOAD_ALL_COND are
suppressed.

- addition of a level for the IDENT part, for
readability and maintainability reasons.

- addition of subsequences in LOAD_DWH and
LOAD_SA steps (new categories and new
subjects).

31/07/2008 A. D’haene, A. Van De
Velde, C. Scheers, D.
Defourny, J.-L. Lejeune,
S. Timmermans

 Herakles

©2009 Siemens IT Solutions and Services -6/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

02.01 Re-introduction of an evaluator
(TECH_EVAL_LOAD_NOSRC) in the
SEQ_1_TRANSL, to freeze the list of load ids that
will be processed during one occurrence of this
sequence. Adaptation of the
TECH_EVAL_TARGET_TRANSL to take this list into
account.

Adaptation of some evaluators
(TECH_EVAL_LOAD, TECH_EVAL_LOAD_TABLE,
TECH_EVAL_LOAD_TABLE_TARGET,
TECH_EVAL_TARGET_LOAD_SA) and one
consolidator (TECH_CONSOL_LOAD), to deal with
the special case of sources containing base and
referential tables, but for which only referential tables
are delivered.

Extension of the functionality of the cleaning, with the
truncation of the SA Outbox, to improve the
performance of the LOAD_DWH.

19/12/2008 A. D’haene, D.
Defourny, C. Scheers,
S. Timmermans, A. Van
De Velde, S. Verplaetse

02.02 Documentation of undocumented DataStage
userstatus “255”.

Enhancement of the synchronization script
moveSA2OutboxTransl.sh.

20/01/2009 A. D’haene, D.
Defourny, C. Scheers,
S. Timmermans, A. Van
De Velde, S. Verplaetse

02.03 Further documentation of undocumented DataStage
userstatus “255”.

03/03/2009 A. D’haene, D.
Defourny, C. Scheers,
S. Timmermans, A. Van
De Velde, S. Verplaetse

03.00 Version updated with extensions of Prométhée
iteration 1:

- repository tables added

- sequences extended

- evaluator TECH_EVAL_TARGET_PRTRT_
LOAD_PLDA_CT_CODE_TABLE_TYPE added

- technical job TECH_CONCAT_MULTIPLE added

31/03/2009 A. D’haene, D.
Defourny, C. Scheers,
S. Timmermans, A. Van
De Velde, S. Verplaetse

Document location:

http://sharepoint/sites/Herakles/Shared%20Documents/PR1%20-%20Eos/PR123%20-
%20Définition%20use%20cases%20et%20implémentation%20pré-
étude%20release%201/03%20Output/Build

 Herakles

©2009 Siemens IT Solutions and Services -7/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

1. Introduction

1.1. Objectives

Objective of this document (work product) is to describe the technical implementation of the components
defined in the guidelines of the technical architecture (see [R01]). Technical description of the 17 job types
can be found in the MTS – Mappingstype Technical Specifications (see [R03]). Eos Iteration 1 specific jobs
have been described in the mapping lists and in the SAD tables.

1.2. Motivation

This document aims at providing the reader a thorough understanding of the technical implementation of the
components under condition that he/she satisfies the prerequisites: see 1.6. The MTS are not part of the
prerequisites for the understanding of this GTS; understanding GTS is however part of the prerequisites for
understanding the MTS.

1.3. Target audience

Target audience for this global technical specification are:

· Herakles Fodfin data representatives, user representatives, functional representatives

· Herakles Fodfin and Siemens functional and technical consultants

· Herakles Fodfin analyst-programmers

· Herakles Siemens solution architect

· Herakles Fodfin and Siemens technical architects

· Herakles Fodfin en Siemens configuration coordinators

· Herakles Fodfin coordinator other projects and Siemens integration coordinator

· Herakles Fodfin QC/ICT, QC/PMO and Siemens QAC

· Fodfin ICT-DCC and other ICT services involved

· Herakles Fodfin en Siemens project team leads

· Herakles Fodfin Business/ICT and Siemens project management

· Herakles Fodfin and Siemens program management

· Herakles Fodfin and Siemens decision makers

1.4. Scope

Approach and structure of this document has been discussed and agreed upon of in a specific Siemens-
Fodfin workgroup. The document describes technical implementation of the components defined in the
guidelines of the technical architecture (see [R01]) and dependencies to Herakles external components.
Where needed reference is made to documents describing the technical implementation of those external
components.

 Herakles

©2009 Siemens IT Solutions and Services -8/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

1.5. Evolution

The implementation described in this document is the outcome of Proof-Of-Concepts (POC) and evaluations
done in close and intensive cooperation between several experts and that way stable and ‘best practice’. .

This document could get new versions in new project releases / iterations when components are adapted for
optimization purposes through proceeding insight.

1.6. Prerequisites
The “Technical Architecture Guidelines” document and its associated prerequisites are the prerequisites of
this document.

 Herakles

©2009 Siemens IT Solutions and Services -9/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

1.7. References

Title Author Version Date

R01 Herakles_Eos_Promethee_TAD_v0201.doc A. D’haene, D. Defourny,
C. Le Gall, C. Scheers, S.
Timmermans, A. Van De
Velde, S. Verplaetse

02.01 19/12/2008

R02 Herakles_Eos_Prométhée_TAD_v0100_Ft
p.doc

DCC 01.00 01/2008

R03 Herakles_Eos_Prométhée_MTS_*_v010n.d
oc

A. D’haene, D. Defourny,
C. Le Gall, A. Van De
Velde

01.0n

 Herakles

©2009 Siemens IT Solutions and Services -10/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

1.8. List of Acronyms

Acronym Meaning

TAD Technical architecture guidelines document

CCD Coding conventions document

CR Change Request

ETL Extract Transform Load

FTP File transfer Protocol

GTS Global technical specification

ICT Information and Communication Technology

LZ Landing zone

MTS Mapping type specification

POC Proof of concept

QC Quality Control

SA Staging Area

SAD Staging area Design-time

SAR Staging area Run-time

VTOM Visual Tom Scheduler

GTS Global Technical Specification

DWH Datawarehouse

OVOW OpenView Operations for Windows

ESM Enterprise Systems Management

 Herakles

©2009 Siemens IT Solutions and Services -11/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

2. Architectural overview
The diagram on the next page repeats the high-level overview of the Herakles technical architecture defined
in [R01].

The technical implementation of the different zones and components of the architecture will be specified in
the next chapter.

 Herakles

©2009 Siemens IT Solutions and Services -12/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Herakles Working Directory

HP Openview

 Herakles Master Scheduler (Visual Tom Project)

Framework Repository

Herakles Scheduler

VTOM Application

FtpZone Scheduler

VTOM Application

C
on

tr
ol

P

ro
ce

ss
in

g
S

to
ra

ge

DWH

FTP-Zone Landing Zone (LZ) Staging Area (SA) Datawarehouse (DWH)

EXTRC_SRC TRANSL TRANSF_SRC LOAD_SA LOAD_DWH

PRTRT_...
INTAKE

MANAGE_ FTP

EXTRC_SPLIT

IDENT_...

MREF_...

MERGE_RECID

LOAD_PREP

LOAD_SA

LZ File System

LOAD_DWH

TRANS_DECTRT

CP_FTP_TO_LZ

EVAL CONSOL

EVAL CONSOL

EVAL CONSOL EVAL CONSOL

EVAL CONSOL

EVAL CONSOL

WATCHDOG

WATCHDOG
WATCHD WATCHDOG CLEAN

Outbox

SYNC

WATCHD SYNC

WATCHD SYNC

(Sub-) component Zone Symbolic link

 Herakles

©2009 Siemens IT Solutions and Services -13/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3. Technical components
The following diagram of [R01] depicts the architectural components of Herakles and their interfaces. The
technical implementation of these components will be specified in more detail in the following sections.

Control

Processing Storage

Scheduler (Visual TOM)

Sequence Starter (Unix script)

Monitoring (HP Openview)

FtpZone Manager (Unix script)

Sequences
(DataStage)

Jobs (DataStage)

Watchdog

Monitoring,
Technical error handling,

Reconciliation (measurement)
(DataStage Sequence & Jobs)

Functional error handling /
logging

(DataStage Container)

File System

DB2

FTP

LZ

SA

DWH

Framework

Repository

Cleaning LZ / SA
(DataStage Sequence &

Jobs)

Evaluator / Consolidator
(DataStage Jobs)

Synchronisation SA-DWH
(Unix Scripts)

����

(Sub-) component Symbolic link

���� �

���� �
���� �

���� �

����

��	� �

��
� �

���� �

���� �

����

���� �	��

�
��

����

����

���

���� �

���� �

��� �

���� �

 Herakles

©2009 Siemens IT Solutions and Services -14/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

1) VTOM jobs executes control jobs in a cyclic mode

2) FtpZone Manager checks the FTP storage zone

3) FtpZone Manager scripts insert status records in the SAR_INCOMING table (see section 3.1.2.1
Staging Area Framework Repository).

4) VTOM launches the Sequence starter in a cyclic mode (see section 3.2.3 Herakles scheduler).

5) VTOM sends messages to HP Openview (see section 3.2.3 Herakles scheduler).

6) The sequence starter starts the level 1 DataStage Sequences (see section 3.2.4 Sequence starter and
monitoring).

7) Subsequences are initiated and started

8) Sequences and subsequences call the Watchdog and retrieve the status of subsequences or jobs (see
section 3.3.2.2 Error handling and execution tracing).

9) The Watchdog fills the Framework Repository runtime information (status, time,...) (see section see
section 3.3.2.2 Error handling and execution tracing).

10) Sequences call the Evaluator and Consolidator components and process the returned information (see
section 3.3.2 Processing framework).

11) The Evaluator, Consolidator, Synchronization components consult and update the Framework
Repository (see section 3.3.2 Processing framework).

12) The Synchronization components move or copy datasets from SA working directory to the SA Outbox

13) DataStage job execution.

14) Copy files from FtpZone (see section 3.3.3 Landing zone).

15) Copy files to LZ (see section 3.3.3 Landing zone).

16) Jobs use / create datasets in the Staging area (see section 3.3.4 Staging Area).

17) DataStage LOAD DWH jobs update the data warehouse (see section 3.3.5.1 LOAD_DWH).

18) Jobs use container for functional error handling (see section 3.3.2.2 Error handling and execution
tracing).

19) DataStage functional error handler container logs functional errors in the Framework Repository (see
section 3.3.2.2 Error handling and execution tracing).

20) Cleaning LZ/SA (see section 3.3.2.8 Cleaning).

21) Queries the framework repository to determine elements to be cleaned (see section 3.3.2.8 Cleaning).

 Herakles

©2009 Siemens IT Solutions and Services -15/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1. Storage

3.1.1. General overview

As defined in [R01], the storage functionality consists of 2 different types of storage:

· databases

- Staging Area Framework repository

- Datawarehouse

· file systems

- Ftp Zone file system

- Landing Zone file system

- Staging Area file system

� Herakles Working Directory

� Outbox

These elements are described in the next sections.

 Herakles

©2009 Siemens IT Solutions and Services -16/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1.2. Databases

3.1.2.1. Staging Area Framework Repository

3.1.2.1.1. Design time repository (SAD) tables

SAD_BRON

T_I_BRON_NOM

T_I_EIGNR

T_I_DESCR_NL

T_I_DESCR_FR

T_I_DESCR_DE

C_TIJD_LOAD_TK

SAD_BRON_TABLE

T_I_TABLE_NOM

T_BRON_BRON_NOM

T_I_TABLE_TYPE

N_I_MAX_STAP

SAD_SIGNATURE_INSTANCE

T_I_SIGNAT_INST_NOM

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

T_SIGNAT_SIGNAT_NOM

SAD_UTILISATION

T_I_UTILS

T_SIGNATINST_SIGNAT_INST_NOM

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM
T_JOB_JOB_NOM

T_SIGNAT_SIGNAT_NOM

T_I_STAP

SAD_ERROR_DESCRIPTION

C_I_ERR_CODE

T_I_ERR_TYPE

T_I_ERR_DESCR_EN

T_I_ERR_DESCR_NL

T_I_ERR_DESCR_FR

T_I_ERR_DESCR_DE

SAD_PRIORITEIT_A0301

T_BRON_BRON_NOM

N_I_PRIOR_VORM_JUR_TKT2

N_I_PRIOR_SIT_JUR_TKT2

N_I_PRIOR_ENTRP_CESS_RAIS_TKT2
N_I_PRIOR_STATU_TKT2

N_I_PRIOR_MUNT_TKT2

N_I_PRIOR_REGIM_TVA_TKT2

N_I_PRIOR_FORF_TVA_TKT2

N_I_PRIOR_CCZE_TKT2

N_I_PRIOR_PERS_MORAL_TYPE_TKT2

N_I_PRIOR_DATE_INSCR_KBO_TK

N_I_PRIOR_DATE_AANV_TK

N_I_PRIOR_DATE_CESS_TK

N_I_PRIOR_DATE_CLOT_TK

N_I_PRIOR_DATE_TVA_HOEDA_TK

N_I_PRIOR_DATE_REGIM_TVA_TK

N_I_PRIOR_BOEK_AN_EXC_DEBUT_TK

N_I_PRIOR_BOEK_AN_EXC_FIN_TK

N_I_PRIOR_TVA_HOEDA

N_I_PRIOR_TVA_MENSL_REMBS

N_I_PRIOR_TVA_BEZW_REMBS

N_I_PRIOR_LIJST678

N_I_PRIOR_DROIT_TRCT_CEE

N_I_PRIOR_CAPIT

N_I_PRIOR_DUREE

N_I_PRIOR_BOEKH_ANNEE_FIN_JOUR

N_I_PRIOR_BOEKH_ANNEE_FIN_MOIS

N_I_PRIOR_JAARL_ASS_MOIS

N_I_PRIOR_NUM_BANK_KBO

N_I_PRIOR_IBAN_NUM

SAD_PRIORITEIT_A0201

T_BRON_BRON_NOM

N_I_PRIOR_AMBTR_EURO_TKT2

N_I_PRIOR_BIJK_ACTIV_TKT2

N_I_PRIOR_TAAL_TKT2

N_I_PRIOR_RAD_TKT2

N_I_PRIOR_REF_NUM

N_I_PRIOR_EEUW_NAISS

SAD_PRIORITEIT_A0117

T_BRON_BRON_NOM

N_I_PRIOR_PERS_PERS_TK

N_I_PRIOR_ENTRP_CESS_RAIS_TKT2

N_I_PRIOR_STATU_TKT2

N_I_PRIOR_DATE_INSCR_KBO_TK

N_I_PRIOR_DATE_AANV_TK

N_I_PRIOR_DATE_CESS_TK

N_I_PRIOR_DATE_CLOT_TK

SAD_PRIORITEIT_A0202

T_BRON_BRON_NOM

N_I_PRIOR_PERS_TK

N_I_PRIOR_REGIM_TVA_TKT2

N_I_PRIOR_SIT_JUR_TKT2

N_I_PRIOR_ENTRP_CESS_RAIS_TKT2

N_I_PRIOR_STATU_TKT2

N_I_PRIOR_FORF_TVA_TKT2

N_I_PRIOR_DATE_INSCR_KBO_TK

N_I_PRIOR_DATE_AANV_TK

N_I_PRIOR_DATE_CESS_TK

N_I_PRIOR_DATE_CLOT_TK

N_I_PRIOR_DATE_TVA_HOEDA_TK

N_I_PRIOR_DATE_REGIM_TVA_TK

N_I_PRIOR_TVA_HOEDA

N_I_PRIOR_TVA_MENSL_REMBS

N_I_PRIOR_TVA_BEZW_REMBS

N_I_PRIOR_LIJST678

N_I_PRIOR_DROIT_TRCT_CEE

N_I_PRIOR_DUREE

N_I_PRIOR_DENOM_SOC
N_I_PRIOR_AFKOR

N_I_PRIOR_DENOM_HANDL

SAD_SEQUENCE

T_I_SEQ_NOM

T_I_CONFIG_FILE

SAD_PRIORITEIT_A0310

T_BRON_BRON_NOM

N_I_PRIOR_BOEKH_ANNEE_DEBUT_TK

N_I_PRIOR_BOEKH_ANNEE_FIN_TK

N_I_PRIOR_DATE_JAARL_ASS_TK

N_I_PRIOR_ACPT_CPT_DEPOT_TK
N_I_PRIOR_DATE_BILAN

N_I_PRIOR_TAAL_TKT2

N_I_PRIOR_CPT_DEPOS_AARD_TKT2

SAD_PRIORITEIT_A0311

T_BRON_BRON_NOM

N_I_PRIOR_TAAL_TKT2

N_I_PRIOR_DENOM_SOC

N_I_PRIOR_AFKOR

N_I_PRIOR_DENOM_HANDL

SAD_OVERLAPPING

T_I_DOEL

T_I_INST

L_I_CHEV

SAD_REF_PREFIXE

T_I_DOEL

T_I_INST

T_I_PREFIX

SAD_REF_NOM_CHAMP

T_I_DOEL

T_I_NOM_CHAMP_CODE_NATUR

T_I_NOM_CHAMP_CODE_TECH

SAC_CONVERSION_COMMUNE

C_I_COM_CODE_ANC

C_I_COM_CODE_NIEUW

SAD_PRIORITEIT_A0110

T_BRON_BRON_NOM

N_I_PRIOR_TOELA_PHASE_TKT2

N_I_PRIOR_TOELA_RAIS_FIN_TKT2

N_I_PRIOR_DUREE

SAD_JOB_IMPLEMENTATION

T_I_JOB_IMPL_NOM

T_I_STAP

SAC_CONVERSION_BUREAU

C_I_BUR_CODE_ANC

C_I_BUR_CODE_NIEUW

SAD_JOB

T_I_JOB_NOM

T_JOBIMPL_JOB_IMPL_NOM

T_SEQ_SEQ_1_NOM

T_SEQ_SEQ_2_NOM

T_SEQ_SEQ_3_NOM

T_SEQ_SEQ_4_NOM

T_I_STAP

SAD_SIGNATURE

T_I_SIGNAT_NOM

SAD_REF_BRON_TABLE_VENTILATION

T_I_CAT

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

T_I_JOB_NOM

T_I_SIGNAT_INST_NOM

T_I_SIGNAT_NOM

 Herakles

©2009 Siemens IT Solutions and Services -17/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Most of the concepts used in this schema are those that come directly from the functional analysis and will
be discussed briefly here:

· SAD_BRON contains the defined sources (with the version included in its name), description and owner.
Other decorative fields can be added when necessary.

Column Type Description / Possible values

T_I_BRON_NOM VARCHAR(125) Name of the source

T_I_EIGNR VARCHAR(25) Owner of the source

T_I_DESCR_NL VARCHAR(254) Dutch description

T_I_DESCR_FR VARCHAR(254) French description

T_I_DESCR_DE VARCHAR(254) German description

C_TIJD_LOAD_TK BIGINT

Latest delivery time from the source owner to the
FtpZone

PRIMARY KEY (T_I_BRON_NOM)

· SAD_BRON_TABLE contains the tables that belong to a certain source. These are not actual files
merely the logical table names of files that are to be expected. This information is used in
TECH_EVAL_LOAD_TABLE, evalLoadDWH.sh, TECH_CONSOL_LOAD,
TECH_CONSOL_LOAD_TABLE.

Column Type Description / Possible values

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_I_TABLE_NOM VARCHAR(125) Name of the table

T_I_TABLE_TYPE VARCHAR(25) Type of the table: M(andatory), O(ptional)

N_I_MAX_STAP BIGINT

Highest step this source table can reach in the staging
area process: 20 for a referential or pure identification
table, 40 for a base table.

PRIMARY KEY (T_BRON_BRON_NOM, T_I_TABLE_NOM)

· SAD_SIGNATURE contains the collection of all the signatures (i.e. the definition of the characteristics
(fields, data types) of a table or file, on a functional level, independently from the effective persistence of
the data) defined in the functional analysis.

Column Type Description / Possible values

T_I_SIGNAT_NOM VARCHAR(125) Name of the signature

PRIMARY KEY (T_I_SIGNAT_NOM)

 Herakles

©2009 Siemens IT Solutions and Services -18/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· SAD_SIGNATURE_INSTANCE contains the different instances of signatures linked to the source
(group of source files) and specific source file that generates them. This information is used in
TECH_EVAL_TARGET_TRANSL, TECH_EVAL_TARGET_LOAD_SA, TECH_CONSOL_LOAD,
TECH_CONSOL_LOAD_TABLE.

Column Type Description / Possible values

T_I_SIGNAT_INST_NOM VARCHAR(125) Name of the signature instance

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_BRONTABLE_TABLE_NOM VARCHAR(125) Name of the table

T_SIGNAT_SIGNAT_NOM VARCHAR(125) Name of the signature

PRIMARY KEY (T_I_SIGNAT_INST_NOM,T_BRON_BRON_NOM,T_BRONTABLE_TABLE_NOM)

· SAD_JOB contains collection of all the functional jobs (mappings) defined in the functional analysis, and
of some technical jobs for initialization purpose. This information is used in recordCounting.sh,
TECH_EVAL_INIT_REF, TECH_EVAL_LOAD_TABLE_TARGET,
TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE_GENERAL,
TECH_EVAL_TARGET_TRANSL, TECH_EVAL_TARGET_LOAD_SA,
TECH_EVAL_TARGET_LOAD_DWH_REF.

Column Type Description / Possible values

T_I_JOB_NOM VARCHAR(125) Name of the job

T_JOBIMPL_JOB_IMPL_NOM VARCHAR(125) Name of the job implementation

T_I_STAP VARCHAR(25)

Step in the ETL process:

EXTRC, TRANSL, TRANSF, LOAD_SA , LOAD_DWH

T_SEQ_SEQ_1_NOM VARCHAR(125) Name of the level 1 sequence

T_SEQ_SEQ_2_NOM VARCHAR(125) Name of the level 2 sequence

T_SEQ_SEQ_3_NOM VARCHAR(125) Name of the level 3 sequence

T_SEQ_SEQ_4_NOM VARCHAR(125) Name of the level 4 sequence

PRIMARY KEY (T_I_JOB_NOM)

· SAD_JOB_IMPLEMENTATION contains the actual DataStage job name that implements a certain
functional job. There will be a difference between the functional job and its implementation in the case of
a generic implementation of several functional jobs.

Column Type Description / Possible values

T_I_JOB_IMPL_NOM VARCHAR(125) Name of the job implementation

T_I_STAP VARCHAR(25)

Step in the ETL process:

EXTRC, TRANSL, TRANSF, LOAD_SA , LOAD_DWH

PRIMARY KEY (T_I_JOB_IMPL_NOM)

 Herakles

©2009 Siemens IT Solutions and Services -19/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· SAD_ UTILISATION contains the roles (Input, Output, Auxiliary, Reject) of the signature instances with
respect to the jobs. This information is used in recordCounting.sh, TECH_EVAL_INIT_REF,
TECH_EVAL_LOAD_TABLE_TARGET,
TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE_GENERAL,
TECH_EVAL_TARGET_TRANSL, TECH_EVAL_TARGET_LOAD_SA,
TECH_EVAL_TARGET_LOAD_DWH_REF, TECH_CONSOL_LOAD, TECH_CONSOL_LOAD_TABLE.

Column Type Description / Possible values

T_SIGNATINST_SIGNAT_INST_NOM VARCHAR(125) Name of the signature instance

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_BRONTABLE_TABLE_NOM VARCHAR(125) Name of the table

T_JOB_JOB_NOM VARCHAR(125) Name of the job

T_I_UTILS CHAR(1)

Usage of the signature instance:

I(input), A(uxiliary), O (output)

T_SIGNAT_SIGNAT_NOM VARCHAR(125)

T_I_STAP VARCHAR(25)

Step in the ETL process:

EXTRC, TRANSL, TRANSF, LOAD_SA , LOAD_DWH

PRIMARY KEY (T_SIGNATINST_SIGNAT_INST_NOM,T_BRON_BRON_NOM,T_JOB_JOB_NOM,T_I_UTILS)

· SAD_SEQUENCE contains the name of all sequences and permits specifying for level 1 sequences the
DataStage node configuration file that will be used. This information is used in the seqVtom.sh shell
script.

Column Type Description / Possible values

T_I_SEQ_NOM VARCHAR(125) Name of the sequence

T_I_CONFIG_FILE VARCHAR(125)

Name of the DataStage node configuration file that will
be used to start this sequence (only for level 1
sequences).

PRIMARY KEY (T_I_SEQ_NOM)

· SAD_ERROR_DESCRIPTION contains the codes and messages related to the errors and warnings
trapped in the ETL-process.

Column Type Description / Possible values

C_I_ERR_CODE BIGINT Error code

T_I_ERR_TYPE CHAR(1) Error type: E(rror), W(arning)

T_I_ERR_DESCR_EN VARCHAR(254) English description

T_I_ERR_DESCR_NL VARCHAR(254) Dutch description

T_I_ERR_DESCR_FR VARCHAR(254) French description

T_I_ERR_DESCR_DE VARCHAR(254) German description

PRIMARY KEY (C_I_ERR_CODE)

 Herakles

©2009 Siemens IT Solutions and Services -20/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Moreover, some tables were added to parameterize some processes

· SAD_OVERLAPPING specifies, according to the source and target of bridge tables, if time overlapping
is allowed between records of the table. This information is used by the LOAD_SA jobs (see [R03]).

Column Type Description / Possible values

T_I_DOEL VARCHAR(125) Name of the target

T_I_INST VARCHAR(125) Name of the instance

L_I_CHEV DECIMAL(1,0) Is time overlapping allowed? (1 = True, 0 = False)

PRIMARY KEY (T_I_DOEL,T_I_INST)

· SAD_PRIORITEIT_* specifies, per field of a specific target, the sources feeding this field and the related
priority. This information will also be used by the LOAD_SA jobs (see [R03]).

Column Type Description / Possible values

T_BRON_BRON_NOM VARCHAR(125) Name of the source

N_I_PRIOR_* SMALLINT

Priority (1, 2,…) for each field of the corresponding
DWH table, in function of the source. A 999 priority
means that this field does not exist in the specified
source.

PRIMARY KEY (T_BRON_BRON_NOM)

· SAD_REF_NOM_CHAMP allows a generic implementation of LOAD_DWH jobs (see [R03]) for generic
referential tables, by specifying the name of the specific fields of these tables. This information is used in
TECH_EVAL_TARGET_LOAD_DWH_REF.

Column Type Description / Possible values

T_I_DOEL VARCHAR(125) Name of the target

T_I_NOM_CHAMP_CODE_NATUR VARCHAR(125) Name of natural key

T_I_NOM_CHAMP_CODE_TECH VARCHAR(125) Name of the technical key

PRIMARY KEY (T_I_DOEL)

· SAD_REF_PREFIXE allows to treat on a generic way referential tables fed by several source tables.
This treatment is localised in the “MREF_*” jobs (see [R03]).

Column Type Description / Possible values

T_I_DOEL VARCHAR(125) Name of the target

T_I_INST VARCHAR(125) Name of the instance

T_I_PREFX VARCHAR(25)

The prefix that has to be concatenated to the natural
code of the referential for these target and instance.

PRIMARY KEY (T_I_DOEL,T_I_INST)

 Herakles

©2009 Siemens IT Solutions and Services -21/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· SAD_REF_BRON_TABLE_VENTILATION allows to treat on a generic way several referential tables
fed by only one source table. This treatment is currently only localised in the
“PRTRT_LOAD_PLDA_CT_CODE_TABLE_TYPE” job.

Column Type Description / Possible values

T_I_CAT VARCHAR(125) Category of the subtable contained in the source table

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_BRONTABLE_TABLE_NOM VARCHAR(125) Name of the source table

T_I_JOB_NOM VARCHAR(125) Name of the functional job processing the subtable

T_I_SIGNAT_NOM VARCHAR(125) Name of the output signature of the functional job

T_I_SIGNAT_INST_NOM VARCHAR(125)

Name of the output signature instance of the functional
job

PRIMARY KEY (T_I_CAT, T_BRON_BRON_NOM, T_BRONTABLE_TABLE_NOM)

At last, two special tables have been added to support conversion

· SAC_CONVERSION_COMMUNE contains the conversion of old NIS – INS city codes to the new codes.
This table is used in the jobs MFREF_LOAD_Y0104_CODE_COMMUNNE,
MFREF_TKSEARCH_Y0104_CODE_COMMUNNE, MREF_TKSEARCH_CONTACT_ADRESSE

Column Type Description / Possible values

C_I_COM_CODE_ANC VARCHAR(125) Old code of the city

C_I_COM_CODE_NIEUW VARCHAR(125) New code of the city

PRIMARY KEY (C_I_COM_CODE_ANC)

· SAC_CONVERSION_BUREAU contains the conversion of old customs office codes to the new codes.
This table is used in the jobs MREF_LOAD_Y0433_DOUANE_BUREAU and
MREF_TKSEARCH_Y0433_DOUANE_BUREAU

Column Type Description / Possible values

C_I_BUR_CODE_ANC VARCHAR(125) Old code of the customs office

C_I_BUR_CODE_NIEUW VARCHAR(125) New code of the customs office

PRIMARY KEY (C_I_BUR_CODE_ANC)

 Herakles

©2009 Siemens IT Solutions and Services -22/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1.2.1.2. Run time repository (SAR) tables

SAD_BRON

T_I_BRON_NOM

T_I_EIGNR

T_I_DESCR_NL

T_I_DESCR_FR

T_I_DESCR_DE

C_TIJD_LOAD_TK

SAD_BRON_TABLE

T_I_TABLE_NOM

T_BRON_BRON_NOM

T_I_TABLE_TYPE

N_I_M AX_STAP

SAR_RUN

C_I_RUN_TK

T_J OBIM PL_J OB_IMPL_NOM

C_LOAD_LOAD_TK

T_I_DOEL

T_I_ INST

N_I_JOB_STATU

S_I_DEBUT

S_I_FIN

N_I_DUREE

SAR_LOAD

C_I_LOAD_TK

T_BRON_BRON_NOM

S_I_EXTRC

S_I_ARRIV

S_I_TRANS

S_I_LOAD

N_I_STAP

T_I_STATU

SAR_LOAD_TABLE

C_LOAD_LOAD_TK

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

N_I_STAP

T_I_STATU

SAR_INCOM ING

T_I_FILE_NOM

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

S_I_EXTRC

S_I_ARRIV

S_I_TRANS

N_I_REC_NBR

T_I_STATU

SAR_ERROR_LOG

C_ERRDESCR_ERR_CODE

T_J OBIMPL_J OB_IM PL_NOM

C_LOAD_LOAD_TK

T_I_DOEL

T_I_ INST

S_I_ERROR

C_I_REC

T_I_DATA

SAR_FILE

T_I_FILE_NOM

C_LOAD_LOAD_TK

C_RUN_RUN_TK

T_SIGNATINST_SIGNAT_INST_NOM

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

S_I_ INS

N_I_REC_NBR

SAD_UTILISATION

T_I_UTILS

T_SIGNATINST_SIGNAT_INST_NOM

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

T_J OB_J OB_NOM

T_SIGNAT_SIGNAT_NOM

T_I_STAP

SAD_JOB_IM PLEMENTATION

T_I_JOB_IM PL_NOM

T_I_STAP

SAR_SYNCHRONISATIE

T_SIGNAT_SIGNAT_NOM

T_I_STAP

L_I_SA_LEZEN_CLOT

L_I_DWH_OVERS_CLOT

L_I_SA_OVERS_CLOT

SAD_ERROR_DESCRIPTION

C_I_ERR_CODE

T_I_ERR_TYPE

T_I_ERR_DESCR_EN

T_I_ERR_DESCR_NL

T_I_ERR_DESCR_FR

T_I_ERR_DESCR_DE

SAD_PRIORITEIT_A0201

T_BRON_BRON_NOM

N_I_PRIOR_AMBTR_EURO_TKT2

N_I_PRIOR_BIJK_ACTIV_TKT2

N_I_PRIOR_TAAL_TKT2

N_I_PRIOR_RAD_TKT2

N_I_PRIOR_REF_NUM

N_I_PRIOR_EEUW_NAISS

SAD_PRIORITEIT_A0117

T_BRON_BRON_NOM

N_I_PRIOR_PERS_PERS_TK

N_I_PRIOR_ENTRP_CESS_RAIS_TKT2

N_I_PRIOR_STATU_TKT2

N_I_PRIOR_DATE_INSCR_KBO_TK

N_I_PRIOR_DATE_AANV_TK

N_I_PRIOR_DATE_CESS_TK

N_I_PRIOR_DATE_CLOT_TK

SAD_PRIORITEIT_A0202

T_BRON_BRON_NOM

N_I_PRIOR_PERS_TK

N_I_PRIOR_REGIM _TVA_TKT2

N_I_PRIOR_SIT_J UR_TKT2

N_I_PRIOR_ENTRP_CESS_RAIS_TKT2

N_I_PRIOR_STATU_TKT2

N_I_PRIOR_FORF_TVA_TKT2

N_I_PRIOR_DATE_INSCR_KBO_TK

N_I_PRIOR_DATE_AANV_TK

N_I_PRIOR_DATE_CESS_TK

N_I_PRIOR_DATE_CLOT_TK

N_I_PRIOR_DATE_TVA_HOEDA_TK

N_I_PRIOR_DATE_REGIM _TVA_TK

N_I_PRIOR_TVA_HOEDA

N_I_PRIOR_TVA_M ENSL_REM BS

N_I_PRIOR_TVA_BEZW_REM BS

N_I_PRIOR_LIJ ST678

N_I_PRIOR_DROIT_TRCT_CEE

N_I_PRIOR_DUREE

N_I_PRIOR_DENOM _SOC

N_I_PRIOR_AFKOR

N_I_PRIOR_DENOM _HANDL

SAD_SEQUENCE

T_I_SEQ_NOM

T_I_CONFIG_FILE

SAD_PRIORITEIT_A0310

T_BRON_BRON_NOM

N_I_PRIOR_BOEKH_ANNEE_DEBUT_TK

N_I_PRIOR_BOEKH_ANNEE_FIN_TK

N_I_PRIOR_DATE_J AARL_ASS_TK

N_I_PRIOR_ACPT_CPT_DEPOT_TK

N_I_PRIOR_DATE_BILAN

N_I_PRIOR_TAAL_TKT2

N_I_PRIOR_CPT_DEPOS_AARD_TKT2

SAD_PRIORITEIT_A0311

T_BRON_BRON_NOM

N_I_PRIOR_TAAL_TKT2

N_I_PRIOR_DENOM_SOC

N_I_PRIOR_AFKOR

N_I_PRIOR_DENOM_HANDL

SAD_OVERLAPPING

T_I_DOEL

T_I_ INST

L_I_CHEV

SAD_REF_PREFIXE

T_I_DOEL

T_I_ INST

T_I_PREFIX

SAD_REF_NOM _CHAM P

T_I_DOEL

T_I_NOM _CHAM P_CODE_NATUR

T_I_NOM _CHAM P_CODE_TECH

SAD_PRIORITEIT_A0110

T_BRON_BRON_NOM

N_I_PRIOR_TOELA_PHASE_TKT2

N_I_PRIOR_TOELA_RAIS_FIN_TKT2

N_I_PRIOR_DUREE

SAD_SIGNATURE_INSTANCE

T_I_SIGNAT_INST_NOM

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

T_SIGNAT_SIGNAT_NOM

SAD_SIGNATURE

T_I_SIGNAT_NOM

SAD_JOB

T_I_JOB_NOM

T_J OBIM PL_J OB_IMPL_NOM

T_SEQ_SEQ_1_NOM

T_SEQ_SEQ_2_NOM

T_SEQ_SEQ_3_NOM

T_SEQ_SEQ_4_NOM

T_I_STAP

SAD_REF_BRON_TABLE_VENTILATION

T_I_CAT

T_BRON_BRON_NOM

T_BRONTABLE_TABLE_NOM

T_I_J OB_NOM

T_I_SIGNAT_INST_NOM

T_I_SIGNAT_NOM

SAC_CONVERSION_COM M UNE

C_I_COM _CODE_ANC

C_I_COM _CODE_NIEUW

SAD_PRIORITEIT_A0301

T_BRON_BRON_NOM

N_I_PRIOR_VORM _J UR_TKT2

N_I_PRIOR_SIT_J UR_TKT2

N_I_PRIOR_ENTRP_CESS_RAIS_TKT2

N_I_PRIOR_STATU_TKT2

N_I_PRIOR_M UNT_TKT2

N_I_PRIOR_REGIM _TVA_TKT2

N_I_PRIOR_FORF_TVA_TKT2

N_I_PRIOR_CCZE_TKT2

N_I_PRIOR_PERS_MORAL_TYPE_TKT2

N_I_PRIOR_DATE_INSCR_KBO_TK

N_I_PRIOR_DATE_AANV_TK

N_I_PRIOR_DATE_CESS_TK

N_I_PRIOR_DATE_CLOT_TK

N_I_PRIOR_DATE_TVA_HOEDA_TK

N_I_PRIOR_DATE_REGIM _TVA_TK

N_I_PRIOR_BOEK_AN_EXC_DEBUT_TK

N_I_PRIOR_BOEK_AN_EXC_FIN_TK

N_I_PRIOR_TVA_HOEDA

N_I_PRIOR_TVA_MENSL_REM BS

N_I_PRIOR_TVA_BEZW_REM BS

N_I_PRIOR_LIJ ST678

N_I_PRIOR_DROIT_TRCT_CEE

N_I_PRIOR_CAPIT

N_I_PRIOR_DUREE

N_I_PRIOR_BOEKH_ANNEE_FIN_J OUR

N_I_PRIOR_BOEKH_ANNEE_FIN_MOIS

N_I_PRIOR_J AARL_ASS_MOIS

N_I_PRIOR_NUM _BANK_KBO

N_I_PRIOR_IBAN_NUM

SAC_CONVERSION_BUREAU

C_I_BUR_CODE_ANC

C_I_BUR_CODE_NIEUW

 Herakles

©2009 Siemens IT Solutions and Services -23/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

The most important tables in this SAR-schema are:

· SAR_INCOMING implements the interface with the Ftp-zone. The ftp-zone manager will insert in this
table a record per available file (see also [R02]). This table is used in TECH_EVAL_INTAKE,
TECH_CONSOL_INTAKE.

Column Type Description / Possible values

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_BRONTABLE_TABLE_NOM VARCHAR(125) Name of the table

T_I_FILE_NOM VARCHAR(254) Name of the file

S_I_EXTRC TIMESTAMP Date and time of the extraction

S_I_ARRIV TIMESTAMP Date and time of the arrival in the FtpZone

S_I_TRANS TIMESTAMP Date and time of the transmission to Herakles

N_I_REC_NBR BIGINT Number of records of the table

T_I_STATU CHAR(1)

Status: R (ready for intake), I (intake in progress),
F (intake failed), O (intake OK)

PRIMARY KEY (T_BRON_BRON_NOM,T_BRONTABLE_TABLE_NOM,T_I_FILE_NOM)

· SAR_LOAD holds all the sources that were transferred from the landing zone to the staging area and

their status at source level (i.e. “Ready for Extraction”, “Ready for Translation”, …, “Ready for Load
DWH”). This table can be seen as an aggregate of what is in the SAR_LOAD_TABLE table. It is at this
level that the load id is a key field, resulting in the fact that any load id applies only to one source
delivered on one moment. This table is used in TECH_EVAL_LOAD, TECH_EVAL_LOAD_TABLE,
TECH_EVAL_LOAD_TABLE_TARGET, TECH_EVAL_LOAD_NOSRC,
TECH_EVAL_TARGET_TRANSL, TECH_EVAL_TARGET_LOAD_SA, , evalLoadDWH.sh,
TECH_CONSOL_INTAKE, TECH_CONSOL_LOAD, TECH_CONSOL_ALL_COND,
consolLoadDWH.sh.

Column Type Description / Possible values

C_I_LOAD_TK BIGINT Load id

T_BRON_BRON_NOM VARCHAR(125) Name of the source

S_I_EXTRC TIMESTAMP Date and time of the extraction

S_I_ARRIV TIMESTAMP Date and time of the arrival in the FtpZone

S_I_TRANS TIMESTAMP Date and time of the transmission to Herakles

S_I_LOAD TIMESTAMP Date and time of the load into the DWH

N_I_STAP BIGINT

Step in the ETL process

0 (intake done), 10 (EXTRC done),
20 (TRANSL done), 30 (TRANSF done),
40 (LOAD_SA done), 50 (LOAD_DWH done)

T_I_STATU CHAR(1)

Status:

I(n treatment), R(eady for next step)

PRIMARY KEY (C_I_LOAD_TK)

 Herakles

©2009 Siemens IT Solutions and Services -24/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· SAR_LOAD_TABLE defines per data source the list of files and their status. There is a relation 1:n
between the table SAR_LOAD and SAR_LOAD_TABLE because one entry in the table SAR_LOAD has
one or more entries in the table SAR_LOAD_TABLE. This table is used in TECH_EVAL_LOAD_TABLE,
TECH_EVAL_LOAD_TABLE_TARGET, TECH_CONSOL_INTAKE, TECH_CONSOL_LOAD,
TECH_CONSOL_LOAD_TABLE, TECH_CONSOL_ALL_COND, consolLoadDWH.sh..

Column Type Description / Possible values

C_LOAD_LOAD_TK BIGINT Load id

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_BRONTABLE_TABLE_NOM VARCHAR(125) Name of the table

N_I_STAP BIGINT

Step in the ETL process

0 (intake done),
10 (EXTRC done),
20 (TRANSL done),
30 (TRANSF done),
40 (LOAD_SA done),
50 (LOAD_DWH done)

T_I_STATU CHAR(1)

Status:

I(n treatment), R(eady for next step)

PRIMARY KEY (C_LOAD_LOAD_TK,T_BRON_BRON_NOM,T_BRONTABLE_TABLE_NOM)

· SAR_FILE contains all the signature-instances that were actually generated for a certain load id. It
contains also record counts of the files in order to facilitate validation of a run. If jobs are restarted, the
entries in this table are not overwritten but new records are inserted. . This table is filled in by
TECH_CONSOL_INTAKE and recordCounting.sh, and used in TECH_EVAL_LOAD_TABLE_TARGET,
TECH_EVAL_TARGET_TRANSL, TECH_EVAL_TARGET_LOAD_SA, TECH_CONSOL_INTAKE,
TECH_CONSOL_LOAD_TABLE.

Column Type Description / Possible values

C_LOAD_LOAD_TK BIGINT

Load id

(in the case of a job independent of a particular source
(e.g. a INIT job), the value will be -1)

C_RUN_RUN_TK BIGINT

Run id

(in the case of an INTAKE, the value will be 0)

T_SIGNATINST_SIGNAT_INST_NOM VARCHAR(125) Name of the signature instance

T_I_FILE_NOM VARCHAR(254) Name of the file

T_BRON_BRON_NOM VARCHAR(125) Name of the source

T_BRONTABLE_TABLE_NOM VARCHAR(125) Name of the table

S_I_INS TIMESTAMP Date and time of insertion

N_I_REC_NBR BIGINT Number of records

PRIMARY KEY (C_LOAD_LOAD_TK,C_RUN_RUN_TK,T_SIGNATINST_SIGNAT_INST_NOM,T_I_FILE_NOM)

 Herakles

©2009 Siemens IT Solutions and Services -25/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· SAR_SYNCHRONISATIE supports the synchronisation between the staging area outbox and the data
warehouse. The goal of this synchronisation is to avoid that data of the staging area outbox are modified
while other SA processes are using it of while the data warehouse is loading. This table is used in
evalOutbox2SA.sh, consolOutbox2SA.sh, evalOutbox2DWH.sh, consolOutbox2DWH.sh,
moveSA2OutboxTransl.sh, moveSA2OutboxLoadSA.sh.

Column Type Description / Possible values

T_SIGNAT_SIGNAT_NOM VARCHAR(125) Name of the signature

T_I_STAP VARCHAR(25)

Step in the ETL process:

EXTRC, TRANSL, TRANSF, LOAD_SA , LOAD_DWH

L_I_SA_LEZEN_CLOT SMALLINT

If True (1), the signature cannot be read from the SA
Outbox, because a process in the TRANSL or
LOAD_SA step is overwriting it.

L_I_DWH_OVERS_CLOT SMALLINT

If True (1), the signature cannot be overwritten in the
SA Outbox, because a process in the LOAD_DWH
step is reading it.

L_I_SA_OVERS_CLOT SMALLINT

If True (1), the signature cannot be overwritten in the
SA Outbox, because a process in the LOAD_SA step
is reading it.

PRIMARY KEY (T_SIGNAT_SIGNAT_NOM)

 Herakles

©2009 Siemens IT Solutions and Services -26/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Apart from these tables, two more tables exist, serving more for a monitoring purpose:

· SAR_RUN contains the log information of the job start time, stop time, duration and the status (success,
warning, error) with which they finished. This table is filled by the seqVtom.sh shell script and by the
TECH_TRACE_RUN job.

Column Type Possible values

C_I_RUN_TK BIGINT Run id

T_JOBIMPL_JOB_IMPL_NOM VARCHAR(125) Name of the job implementation

C_LOAD_LOAD_TK BIGINT

Load id

(in the case of a sequence or of job independent of a
particular source (e.g. a INIT job), the value will be -1)

T_I_DOEL VARCHAR(125) Name of the target

T_I_INST VARCHAR(125) Name of the instance

N_I_JOB_STATU BIGINT

Status:
1 (success), 2 (warning), 3 (error),

255 (undocumented DataStage value corresponding to
the conversion of an empty userstatus (string) to a
number. This empty userstatus appears for example
when a level 1 sequence is started two times. In this
case, the second call fails (these concurrent calls
come from a DCC workaround for a V-TOM “feature”:
a cyclic job does not start anymore after midnight).
This empty userstatus also appears when DataStage
is down. All the cases when DataStage cannot start a
level 1 sequence should result in this empty user
status, because the userstatus is set by this level 1
sequence, its subsequences and the watchdogs.

S_I_DEBUT TIMESTAMP Date and time of the start of the job

S_I_FIN TIMESTAMP Date and time of the end of the job

N_I_DUREE BIGINT Elapsed time in seconds

PRIMARY KEY (C_I_RUN_TK)

 Herakles

©2009 Siemens IT Solutions and Services -27/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· SAR_ERROR_LOG contains the log information of the logical errors and warnings (wrong record
structure, key not filled in, date converted to default, …) that are trapped within the jobs, see [R03]. This
information is inserted by the shared container SCErrorLog.

Column Type Description / Possible values

C_ERRDESCR_ERR_CODE BIGINT Error code

T_JOBIMPL_JOB_IMPL_NOM VARCHAR(125) Name of the job implementation

C_LOAD_LOAD_TK BIGINT Load id

T_I_DOEL VARCHAR(125) Name of the target

T_I_INST VARCHAR(125) Name of the instance

S_I_ERROR TIMESTAMP Date and time of the error

C_I_REC BIGINT Record id

T_I_DATA LONG VARCHAR Data specifying the error

No primary key

 Herakles

©2009 Siemens IT Solutions and Services -28/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1.2.1.3. DB2 Sequences

Three DB2 sequences are used to generate technical keys:

1. SEQ_LOADID will be called by the moveFtp2Landing.sh script for the generation of load ids.

2. SEQ_RUNID will be called by the getRunID.sh script for the generation of run ids.

3. SEQ_TK will be called by the SCTKGenerator container to generate the technical keys of the tables
(PTK’S, TK’s and TKT2’s)

SCTKGenerator

This shared container (generic job) is used to fetch unique keys. This is done through a combination of a
DB2 sequence, which will use the next value command, and DataStage generated key.

The shared container adds a column containing the generated key to its input.
Column propagation is used to make the job generic.

Parameter(s)

� PARDB2SequenceName: the name of the DB2 sequence,

� PARTechnicalKeyName: the name of the technical field
which will contain the generated value,

� PARServer: server of the staging area DB,

� PARInstance: instance of the staging area DB and

� PARSchema: schema of the staging area DB

 Herakles

©2009 Siemens IT Solutions and Services -29/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� A column generator Stage is used to add a KEY_LOOKUP column which will contain the technical key.
After the generation the column in the signature (through column propagation) a surrogate key generator
Stage is used to generate a 32-bit integer value and the value is stored in the column LOCAL_KEY.

� After the local key has been generated a lookup Stage is used which will use the empty column
KEY_LOOKUP to make a lookup to a DB2 Stage where a select statement is launched to fetch a
database sequence. The returned value is inserted in the NEXTVALDB2 field.

� A transformation Stage is used to concatenate the value of the surrogate key with the DB2 value and
safe it to field KEY.

� Finally a modify Stage is used to drop the unused columns KEY_LOOKUP, LOCAL_KEY and
NEXTVALDB2 and renames the KEY field to the value passed in the shared container Stage, in the
above example this would be C_I_CTRT_TK.

Used in

� All jobs that used unique keys

Related component(s)

� N/A

3.1.2.2. Datawarehouse

3.1.2.2.1. Adding technical fields

To facilitate maintenance by augmenting the traceability of the data on one hand and to be able to minimize
load-volumes on the other a number of technical fields were added to the Datawarehouse storage. The
following fields were uniformly added to all tables:

· C_LOAD_LOAD_INS_TK (Bigint): contains the value of the load-id that initially created the record. This
is actually not a new field but is the rename of the original C_I_LOAD_TK that was already present in
most (but not all) tables.

· C_LOAD_LOAD_UPD_TK (Bigint): contains the value of the load-id that last updated the record.

· S_I_INS (Timestamp): date and time of the initial creation of the record.

· S_I_UPD (Timestamp): date and time of the last update of the record.

· S_I_DB_UPD (Timestamp): date and time of the last insertion / update of the record in the database.

It can be argued that the UPD-fields have no meaning for tables were by definition no updates will be done
(contacts, white Identification…). For reasons of code-base uniformity and ease of development, these fields
will be added anyway.

 Herakles

©2009 Siemens IT Solutions and Services -30/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1.2.2.2. Primary keys

A primary key has been defined for every table. For bridge tables a field has been added in the table to fulfil
this function.

3.1.2.2.3. Referential integrity

The foreign references present in any table in the Datawarehouse will have an informational constraint
defined.

3.1.2.2.4. Indexing strategy

The only indexes created in the data warehouse are those necessary for the load process, namely the
indexes created automatically to support the primary keys.

Other indexes (useful for queries, datamarts,...) will have to be defined in function of the needs.

For these indexes, two possibilities exist:

· they will be created by the responsible FOD/SPF Finances service and continuously updated during the
load process. In this case, the performance of the loading of the data warehouse will be impacted.

· they will be dropped before the loading of the data warehouse and re-created after. This drop / recreate
can be done with the two shell scripts / tpl files described hereunder. In this case, the performance of the
loading of the data warehouse will not be impacted, but a certain amount of time will be necessary to
recreate the indexes after the loading.

The choice between the two methods will have to be done by a DBA in function of each specific index.

loadDWHPreprocessing.sh - loadDWHPreProcessing.tpl

The loadDWHPreprocessing.sh script is called at the beginning of the SEQ_1_LOAD_DWH, after the
LOAD_DWH evaluator.

Parameter(s)

� instance of the data warehouse DB

� schema of the data warehouse DB

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

 Herakles

©2009 Siemens IT Solutions and Services -31/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Processing

This shell script cleans up the previous version of the sql script loadDWHPreProcessing.sql, reads the
loadDWHPreProcessing.tpl, generates a new sql script by instantiating the DWH instance and schema
names and executes the generated script. The SA instance and schema names, foreseen for a potential
future use, are currently not used. The loadDWHPreProcessing.tpl file is currently empty, but could contain
in the future any useful DB2 commands such as the dropping of indices.

loadDWHPostprocessing.sh - loadDWHPostProcessing.tp l

Same parameters, output, return code and processing as the previous script but executed at the end of the
SEQ_1_LOAD_DWH sequence on the basis of the loadDWHPostProcessing.tpl file.

 Herakles

©2009 Siemens IT Solutions and Services -32/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1.3. File Systems

3.1.3.1. Ftp zone

See [R02].

3.1.3.2. Landing Zone

The landing zone itself does not have an elaborated directory structure. In fact, the Intake component (see
3.3.3.1 INTAKE) will place the incoming files in a directory named LandingZone/YYYYMMDDHHMM/ where
YYYYMMDDHHMM contains the extraction date and time as it was inserted in the SAR_INCOMING table.

Cleaning this LZ is done together with the cleaning of the Staging area when a certain source was
successfully treated and all intermittent datasets are being deleted (see clean.sh). As already mentioned, it is
not the responsibility of the LZ to construct and maintain an archive of all the data that was delivered. This
source archiving is part of the Ftp zone since this zone is shared between multiple projects (see [R02]).

3.1.3.3. Staging Area

3.1.3.3.1. Herakles Working Directory

The Herakles Working Directory contains the main subdirectories described in the following sections.

Every shell script calls the .herarc file contained in this folder before executing any commands. This file
sets all the environment settings for the Herakles project, for example export
PARHeraBin=${PARHeraWork}/bin, export PARHeraSql=${PARHeraWork}/sql or the path to the DataStage
binaries.

3.1.3.3.2. Signatures Directory

The signatures directory holds a subdirectory for every signature defined in the functional analysis (and listed
in the SAD_SIGNATURE table). Within this directory, all the signature instances (.ds files) for the different
load ids are stored (the load id is contained in the name of the file). This signature directory allows for all the
files that belong to a certain signature to be located in the same place. This has multiple advantages ranging
from ease of cleaning the datasets when a load has successfully finished to facilitating unit tests because
one always knows where the files will be located.

This mechanism, together with the symbolic linking described in the next section, also eliminates the need
for moving files in between jobs.

Every temporary signature which is created during the run-time process, like the signature which is created
for concatenating different signature to one dataset will also be stored in this directory.

3.1.3.3.3. Jobs directory

The jobs directory likewise holds a subdirectory for every functional job that has been defined in the analysis
(mappings) with the name of the functional job for which it was created. These directories correspond with
the entries in the SAD_JOB table. Every one of these subdirectories contains in its turn the following 4
subdirectories: in, out, aux, and rej in which symbolic links are stored towards the signature directories and

 Herakles

©2009 Siemens IT Solutions and Services -33/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

which play the role of respectively input, output, auxiliary (like a lookup, or delta-current dataset) and reject
depending on what has been defined in the SAD_UTILISATION table.

This way, any job will always go looking for his input data and putting his output data in the correct location
without the necessity of moving the .ds files themselves.

The picture below describes a typical case of this mechanism. The EXTRC_SPLIT job has as one of its
outputs the signature NK_Y0211_CODE_ACTIVITE_PROFESSIONNELLE which serves also as input for
the MREF_TKSEARCH_Y0211 job. Instead of moving the file from one OUT to the other IN, which would
imply that we would have to foresee some scripting to support this and an some of control logic in the case of
failure for resetting the system in its initial state, we create two UNIX symbolic link in both the OUT and the
IN directories that point towards the signature directory where the actual data are stored. This mechanism
combined with DataStage’s full restartability, where an output file is not overwritten but placed on stand-by
until the job has correctly finished, adds a great deal to the restartability of the entire system

The following screenshot gives an example of a directory structure that will be automatically generated a roll-
out time on the basis of the SAD repository tables.

Signatures-directory

EXTRC_SPLIT_KBOBCE_FEKBO_070_570 MREF_TKSEARCH_Y0211

NK_Y0211_CODE_ACTIVITE_PROFESSIONNELLE NK_...

IN REJ AUX OUT IN REJ AUX OUT

Jobs-directory

 Herakles

©2009 Siemens IT Solutions and Services -34/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.1.3.3.4. Staging Area Outbox

As already described in [R01], the SA Outbox can be divided in 4 “types” storage components each with his
own specificities.

� The Dimension and Bridge tables: with this we mean the (rather large) tables where there exists a
dependency between the records due to some prioritization or chaining mechanism. Examples of such
tables are the A0201_PERSONNE_PHYSIQUE, A0301_PERSONNE_MORALE but also the
A0108_ACTIVITEIT (bridge table) where the insertion of a record may also mean an update (closure) of
a previous one.

� The Reference tables (Ynnnn, A0120, …): these are similar to the dimension tables in a sense that an
insertion may also give rise to an update on that table but one difference with the dimensions can
already be found in the volumes of the tables. Apart from that, these tables will need to be available to
the ETL-process to facilitate where the dimensions are expected to have a number of records in the
order of magnitude of 1E6 to 1E7, the reference tables will be limited to 1E3 or 1E4 and most of them
will not even contain that much.

� The Identification tables (A0102, B0107): these are similar to the dimensions in a way that they will
contain large volumes. On the other hand, they resemble the reference tables in that they require look-
ups on the current state.

� The Fact tables: here, there is not interdependency between records so they can be inserted without any
bother with respect to functional logic.

Based upon these and taking into account the performance and restart capabilities discussed above, as well
as the results of the executed POC’s the datasets have been chosen as physical storage.
Extreme care must be taken in the management of the “current state” (see 3.3.2.4 Stateful jobs). A
mechanism with one memory position (i.e. a current and a new state are available with the possibility to
revert to the previous version in case of execution-failure) is foreseen.

The synchronisation inside the staging area and between the staging area and the data warehouse is
explained in the section 3.3.2.7 Synchronisation.

3.1.3.3.5. bin directory

The PARHeraBin=${PARHeraWork}/bin directory is used to store the scripts which are executed by the
DataStage Sequences.

3.1.3.3.6. etc directory

The PARHeraEtc=${PARHeraWork}/etc contains any Herakles system configuration files. These
configuration files are:

� the DataStage project configuration files (number of nodes used)

· default.apt, used by most of the jobs

· watchdog.apt, used by the Watchdog component

� the parameter files used by some scripts

· nocount.lck (optional file) suppresses the record counting in recordCounting.sh

 Herakles

©2009 Siemens IT Solutions and Services -35/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· noclean.lck (optional file) suppresses the files and datasets cleaning in clean.sh

· cleanSARTable.lst lists the SAR tables, that have to be cleaned in clean.sh

� the contents of the SAD, SAR tables, under the form of flat files

� the schema files used by some DataStage jobs (in subdirectory “schemas”)

3.1.3.3.7. sql directory

The ${PARHeraWork}/sql directory is used to store data database definition or manipulation files: tpl- and
sql-files. The tpl-files are files that are pre-processed to generate sql-files.

3.1.3.3.8. tmp directory

The ${PARHeraWork}/tmp directory contains temporary files for the “control data”. These files are mostly
created by the TECH jobs and Unix scripts in the EVAL phase, read by shell scripts (createCounterList.sh or
createFileCounterList.sh) and passed to the actual job (or loop) using its “stdout” (see also 3.3.2.3 Data
passing between jobs).

3.1.3.3.9. log directory

The PARHeraLog=${PARHeraWork}/log directory will store the log files which are generated during the
execution of the run-time environment. For example, the execution log of the createFrameworkDirs.sh.

3.1.3.3.10. arc directory

The PARHeraArc=${PARHeraWork}/arc directory is used to store archive logs. For example, the contents of
the table SAR_ERROR_LOG are extracted for archiving purpose to a .dat file within this directory. See
clean.sh.

 Herakles

©2009 Siemens IT Solutions and Services -36/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.2. Control

3.2.1. Herakles Master Scheduler

The scheduler utility Visual Tom is used to automate the ETL process. The main responsibility of the usage
of this utility resides in the scheduling of the ETL process with an overall visual status reporting towards the
Data warehouse administrator.

3.2.2. Ftp-zone scheduler

See document [R02].

3.2.3. Herakles scheduler

As explained in the section 3.3 Processing, the sequences have been structured in several levels, each with
its own responsibility. The sequences of level 1 will be exposed to the Herakles scheduler.

VTOM launches the Sequence starter (see 3.2.4 Sequence starter and monitoring) for each individual level 1
sequence every X minutes (adaptable VTOM Parameter, which can be specific for each sequence). In the
case of a technical error (all logical errors are trapped in the DataStage jobs) raised by the level 1 sequence
and returned by the Sequence starter, the execution loop is halted and will be in “EN ERREUR” modus till
manual intervention.

The level 1 sequences are the following:

- 1 “SEQ_1_INTAKE” sequence, which fetches the available source-files from the Ftp-Zone,

- 1 “SEQ_1_EXTRC_<SRC>” extraction sequence for each data source,

- 1 “TRANSL” sequence, which translates the natural keys to technical data warehouse keys and also
loads the Staging Area outbox with the referential and identification data.

- 1 “SEQ_1_TRANSF_<SRC>” transformation sequence for each data source,

- 1 “SEQ_1_LOAD_SA” sequence, which loads the Staging Area outbox,

- 1 “SEQ_1_LOAD_DWH” sequence, which loads the data warehouse, on the basis of the Staging Area
outbox.

Although the sequences are executed every X minutes they will only start executing actual jobs when there
is actual data available. This decision is taken by the Evaluator-component that is integrated in the level 1
and 2 sequences, and bases itself on the information available in the SAR-tables (SAR_BRON or
SAR_BRON_TABLE depending on the sequence level).

For the specific case of the “SEQ_1_LOAD_DWH” sequence, the decision of whether or not to update the
data warehouse is taken within the SEQ_1_LOAD_DWH at a global level (i.e. not for every source
individually). There are 2 cases in which the load can be started:

- all sources that have been delivered are in a state ready for loading (advancement field in the
SAR_LOAD table).

 Herakles

©2009 Siemens IT Solutions and Services -37/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

- not all sources present in the SAR are in a state ready for loading but a certain “last acceptable time for
loading” (also known as drop dead time and defined at system level) has been reached. In this case the
load will start, treating those sources that are in the correct state. If no sources are available in the
correct state, no load is done since no changes took place.

When we arrive in the second case and a load is done, the VTOM component will stop executing the
sequence and no more evaluations will be done. Sources that arrive later will be automatically loaded the
next day.

All sequences can be run in parallel, but the implementation of the VTOM processes is so defined that only 1
instance of a sequence can be executed at once. If needed, VTOM will put a process in wait status and start
the process again after the termination of the sequence. The actual time frame in which the VTOM
processes will be executed will be defined during the production setup.

According to recent developments of the VTOM FODFIN team, the interface to HP Openview is implemented
at the VTOM level and there is no more need of a specific implementation.

The goal of this level of monitoring is to better control the FodFin distributed environment. For a detailed
design overview of the HP Openview – VTOM implementation, go to
http://sharepoint/sites/VTOM/default.aspx.

The possible statuses raised by the DataStage sequences are

1 : sequence finished a normal run with no warnings

2 : sequence finished a normal run with warnings

3 : sequence finished a normal run with an error

VTOM can only handle two states, successful or an error state, for this reason a successful return code is
generated even if warnings are detected.

When a VTOM node gets an error code a message is send to HP Openview with the command “opcmsg”.
Before the message is submitted, it is interpreted by the OpenView Operations Message Interceptor on the
local managed node where the command is executed. Depending on how the message interceptor is
configured, the message can be:

· Discarded

· Locally logged

· Forwarded to the management server

Only a status 3 will return a severity = critical to HP Openview.

 Herakles

©2009 Siemens IT Solutions and Services -38/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.2.3.1. Standards

3.2.3.1.1. Naming Conventions

Nom: Name of the Sequence truncated to 17 characters

Commentaire: Full Sequence Name

Variable Name: PAR_Object_SA

3.2.3.1.2. Visualisation

The following “representation” settings are used:

3.2.3.1.2.1. Valeurs des Noeuds

Contour: Blue

Fond: MediumSpringGreen

Nom: Blue

Relief: Solid

Largeur: 150

Hauteur: 25

Géometrie: Rectangle

Grille : 25

3.2.3.1.2.2. Valeurs par défaut des liens

Couleur : Aquamarine

Relief : Solid

3.2.3.2. Creation of the VTOM environment

Currently 3 VTOM environments are defined,

HER_DEV: Herakles Development environment

HER_ACC: Herakles Acceptance environment

HER_PRD: Herakles Production environment

Local settings

Variable HER_DEV HER_ACC HER_PRD

PARProjectSA HER_nnnn_aaa_Dev HER_Herakles_Acc HER_Herakles_Prd

PARInstanceSA HERAR1_3 HERAR1_3 HERAR1_3

PARSchemaSA SA_nnnn SA SA

 Herakles

©2009 Siemens IT Solutions and Services -39/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

An application is defined “Herakles Master Scheduler”, abbreviated to “HeraklesSchedule”

Under the HeraklesSchedule application the procedures for starting & stopping the whole Herakles ETL
environment will be encapsulated through VTOM nodes which are graphical representation of a
procedure/Script.

Only one Unix script is used to launch the different Visual Tom nodes, the difference resides in the
parameters that are passed to the Unix script.

1.

An application parameter is defined for containing the DataStage project information.

To define the parameter go to, ‘Domaine Exploitation’ and click on Ressources.

 Herakles

©2009 Siemens IT Solutions and Services -40/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Depending on which action you want to do, create an application variable or changing it, click on

‘Nouveau’ or select the one you want to modify and click ‘Modifier’

When choosing ‘Nouveau’ underlying screen is show

Give a name to the parameter by clicking in the ‘Nom’ field and select ‘Texte’ as Ressource type.

In the ‘Valeur’ checklist give the name of the DataStage project. For the purpose of the POC we use
‘HER_EOS_1_1_Dev_Re’ (w/o quotes). After clicking on ‘Valider’ choose ‘Locale’ on the pop-up screen:

 Herakles

©2009 Siemens IT Solutions and Services -41/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

2. Creating/Editing the NODE

When doing a right click on the node, choose definition to alter the node parameters.

Hereunder an overview of the most important settings:

Nom : Name of the script must be unique in the environment, if possible must correspondents to the name of
the script or DataStage job/Sequence

Script: Path of the script which needs to be scheduled, by clicking on the ‘…’ button, altering the script is
possible.

Type de lancement: ‘Périodique’ if needs to start on a certain time, ‘A la demand’ if it needs to start on
request.

For the purpose of the LZ-SA Scheduling the jobs will be set to ‘Lancement cyclique’ every X minutes. With
‘Heure Min. Démarrage ‘ set to 00:00:00 (+ X minute for each additional node) & ‘Heure Max. Démarrage’ to
23:54:59 (+ X minutes for each additional node).

Machine: Machine on which the node will be executed.

 Herakles

©2009 Siemens IT Solutions and Services -42/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Utilisateur: Credentials of the user which will execute the script

Statut: current exploitation status of the Node

‘Comportement en cas d’erreur’: Currently set to bloc the node (and execution) when any problems are
detected (Check also Watchdog behaviour)

3. Creating Node variable

A DataStage project variable has been set globally which can be used for all de nodes, but a local node
variable pointing to a sequence needs to be set for each different node.

Select ‘Parameters’ in the Node definition Menu and choose Arguments:

In the next window select ‘Ajouter’

And select the project parameter as shown on the screenshot

 Herakles

©2009 Siemens IT Solutions and Services -43/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Click on ‘Valider’

Now create the local node parameter by clicking on ‘Ajouter’ en fill the value of the parameter, the sequence
name in text box

Click on ‘Valider’

 Herakles

©2009 Siemens IT Solutions and Services -44/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Be Aware:

The order of appearance of the variables corresponds to $1, $2 in the scripts!

4. When creating a node, the node is not set in exploitation. To set the node in exploitation Select
‘Environnement’ -> ‘Mise en exploitation’

And click on the ‘Mise en exploitation’ button

 Herakles

©2009 Siemens IT Solutions and Services -45/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.2.4. Sequence starter and monitoring

seqVtom.sh

The sequence starter component, implemented as a Unix shell script, is responsible for

- executing the level 1 DataStage sequences, on the basis of the parameters sent by VTOM

- returning the status (success or error) raised by the sequence to VTOM

Parameter(s)

� DataStage project name

� DataStage sequence name

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

Basically the script executes a DSJOB command line task to start a DataStage Sequence, with the
parameters passed by VTOM and the DataStage configuration file, retrieved from the SAD_SEQUENCE
table.

Before starting the execution of the Sequence, a check has been implemented to guarantee that the
sequence is in a runable state, if not, the Sequence is reset before execution.

After execution the job status and user status are fetched with dsjob commands.

Both status codes are taken into account to ensure accurate VTOM Status.

The return codes are evaluated and exit code is passed to VTOM.

3.2.4.1. Detailed Operational en functional monitor ing

As stated in the previous section, the HP Openview monitoring is implemented at the VTOM level. The goal
of this level of monitoring is to better control the FodFin distributed environment.

The operational monitoring is done via HP Openview and on a more detailed level within the SAR tables.

Via HP Openview, the sanity of the Herakles environment can be monitored and dependencies can be
traced between application and infrastructural problems.

In addition to this monitoring, a more detailed logging mechanism has been made available to the DWH
Administrator, through the SAR tables:

· The SAR_RUN monitors the job start time, stop time, duration and the status (success, warning or error).

 Herakles

©2009 Siemens IT Solutions and Services -46/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

· The SAR_ERROR_LOG monitors the logical errors and warnings that are trapped within the jobs
themselves (key not filled in, date converted to default, …).

A DB2 statement, also part of the seqVtom.sh shell script, inserts the following run information of the
sequence in the SAR_RUN table:

� run id

� name of the sequence

� load id (= -1)

� job user status = 1/2/3

� start time

� end time

� duration of the execution.

 Herakles

©2009 Siemens IT Solutions and Services -47/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3. Processing

3.3.1. General overview

The architecture which is detailed here describes the implementation of a run-time environment that allows
for the implementation of the logic described in the functional analysis.

Apart from processing the data as described in the functional analysis the run-time environment also has an
important responsibility in managing the actual execution of the functional jobs. Since for every source new
data arrive on a regular basis, all these different loads for all these sources have to be distinguished, traced,
and possibly prioritized. This can be seen as a functional tracing of the jobs executed where we monitor
the files that where created, record counts, reconciliation information, and so on. On the other hand there is
also a need for technical tracing of the jobs by which we mean, the verification (and logging) that a job
finished OK or, if not, that the error is trapped, reported, propagated to the higher levels and steps are taken
to ensure the job context is put in its initial state again so that it can be re-executed at a later time.

The 2 main mechanisms put in place are the watchdog and the definition of DataStage sequence levels,
each with its own responsibility. The sequences increase the manageability of the development, the
readability and maintainability. The function of the sequence levels will be briefly described here, seen that
their function as been discussed in the technical architecture document. The detailed descriptions of the jobs
themselves are discussed through this document.

3.3.2. Processing framework

3.3.2.1. Technical grouping of job types

The functional job types are regrouped in DataStage sequences:

· EXTRC_<SRC>: the Extraction step, implemented for every source individually, groups the job types of
the groups PRTRT, EXTRC, and TRANS_DECTRT.

· TRANSL: the Translation step (source independent) is responsible for the natural key to technical key
translations. It groups the jobs types of the groups IDENT and MREF (both loads and tksearches). It
also loads the Staging Area Outbox with referential and identification data.

· TRANSF_<SRC>: the transformation step, implemented for every source individually, to increase the
extensibility (a new source will not have impact on an existing TRANSF sequence), groups the
MERGE_RECID and the LOAD_PREP job types.

· LOAD_SA: this step loads the Staging Area Outbox and contains only the LOAD_SA jobs.

· LOAD_DWH: the actual loading into the Datawarehouse from the data prepared in the Staging Area
Outbox. This step allows for the clear separation between the staging area and the data warehouse so
that they become separately scalable. This clear separation increases the recoverability and minimize
the load of the data warehouse

The sequences are subdivided in several levels, each with its own responsibility. These responsibilities are
summarized in the next sections.

 Herakles

©2009 Siemens IT Solutions and Services -48/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.1.1. Sequence level 1

 INTAKE EXTRC TRANSF TRANSL LOAD_SA LOAD_DWH

Load-Id Creation X

Load-Id Evaluation X X

Target Evaluation X

Global Evaluation X

Load-Id Consolidation X X

Global Consolidation X X X

SA-DWH Synchronisation X X X

SA-SA Synchronisation X X

3.3.2.1.2. Sequence level 2

 INTAKE EXTRC TRANSF TRANSL LOAD_SA LOAD_DWH

Load-File Evaluation ! GENSRC X

Load-File Check X X

Load-File-Target Evaluation GENSRC

Target Evaluation X

Target Selection IDENT_
MANUEEL

Job Execution IDENT_
MANUEEL

 IDENT

Load-File Consolidation ! GENSRC X

GENSRC: generic source (e.g. HARDCODED)
! GENSRC: non generic source
IDENT_MANUEEL: job for manual identification part
IDENT: jobs for identification part

 Herakles

©2009 Siemens IT Solutions and Services -49/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.1.3. Sequence level 3

 INTAKE EXTRC TRANSF TRANSL LOAD_SA LOAD_DWH

Load-File-Target Selection GENSRC

Target Evaluation X REF_GEN

Target Selection ! IDENT_
MANUEEL

Job Execution ! GENJOB X ! IDENT_
MANUEEL

 REF_!_GEN
DIM,

BRIDGE,
FACT

Load-File Consolidation GENSRC

! GENJOB: non generic job
REF_GEN: generic referential tables
REF_!_GEN: non-generic referential tables
! IDENT_ MANUEEL: job for TRANSL different than manual identification part
DIM: dimension tables
BRIDGE: bridge tables
FACT: fact tables

3.3.2.1.4. Sequence level 4

 INTAKE EXTRC TRANSF TRANSL LOAD_SA LOAD_DWH

Target Selection X REF_GEN

Load-File-Target Evaluation GENJOB

Load-File-Target Listing GENJOB

Job Execution GENJOB X REF_GEN

GENJOB: generic job (e.g. PTRT_PIVOT_KBOBCE_CODE_GENERAL, PRTRT_LOAD_PLDA_CT_
CODE_TABLE_TYPE)

REF_GEN: generic referential tables

 Herakles

©2009 Siemens IT Solutions and Services -50/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.2. Error handling and execution tracing

All technical errors and warnings are handled in a uniform way at sequence level:

� when entering the sequence, the user status of the sequence is set to DSJS.RUNOK or 1
(RA_InitUserStatus in the picture above), via a call to the InitUserStatus routine

� each job or sequence execution (JA_TECH_EVAL_LOAD in the picture above) is unconditionally
followed by a call the Watchdog component SEQ_TECH_WATCHDOG (JA_WD_EvalLoadID in the
picture above), which stores the job or sequence execution status in its user status.
Subsequently, the sequence user status is set equal to the Watchdog user status, via a call to the
SetUserStatus routine (RA_RAISE_WD_EvalLoadID in the picture above).

� after an unsuccessful execution of a shell script (EC_CreateList in the picture above), the sequence
user status is set equal to error (DSJS.RUNFAILED or 3) , via a call to the SetUserStatus routine
(RA_EC_RaiseFailed in the picture above).

The decision of continuing with the processing is taken at the level of the job activity
(JA_TECH_EVAL_LOAD in the picture above) or execute command, i.e. shell script (EC_CreateList in the
picture above): currently, the processing will only continue if a job terminates with a success (job status
DSJS.RUNOK or 1) or a warning (job status DSJS.RUNWARN or 2), or if a sequence or a shell script
terminates with a success (job status DSJS.RUNOK or 1 for a sequence, return code 0 for a shell script).

Even in the case of an error, some housekeeping activities (e.g. a consolidation, JA_TECH_CONSOL_LOAD
in the picture below) have to take place. In the example below, the consolidator runs unconditionally after the
sequence (JA_SEQ_2_EXTRC_ADRES). It’s only when the sequence (JA_SEQ_2_EXTRC_ADRES), the
consolidator (JA_TECH_CONSOL_LOAD) and their respective watchdogs
(JA_WD_SEQ_2_EXTRC_ADRES and JA_WD_TECH_CONSOL_LOAD resp.) and raisers
(RA_RAISE_WD_SEQ_2_EXTRC_ADRES and RA_RAISE_WD_TECH_CONSOL_LOAD resp.) have run
(SALL_ToELA) that the user status is retrieved (RA_GetUserSatus), via a call to the GetUserStatus routine,
and that the decision of continuing is taken.

 Herakles

©2009 Siemens IT Solutions and Services -51/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Once the sequence terminates, its user status is available for higher level sequences or for the sequence
starter seqVtom.sh, in the case of a level 1 sequence. In the case of an error, it is the responsibility of the
higher level sequence to stop the execution or to continue with other parts (e.g. another load id). In this last
case, the higher level sequence can propagate a user status equal to the worst status of all its components
or to the status of the last component. This last behaviour can imply that a success could be the final status
in VTOM even if some components have failed, but the SAR_RUN repository table will always contain the
individual status of each job or sequence. Such behaviour is currently no longer implemented.

 Herakles

©2009 Siemens IT Solutions and Services -52/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_TECH_WATCHDOG

The SEQ_TECH_WATCHDOG job sequence implements the Watchdog component, that:

� logs and propagates (raises) the execution status of a job or sequence.

� creates a functional trace (start, end, elapsed time, record counts) of the execution of this job or
sequence.

By design multiple instances of a watchdog will run in parallel. In order to identify a specific watchdog and
avoid a DataStage error when two or more watchdogs run in parallel, a unique invocation id has to be used
when calling this sequence.

 Herakles

©2009 Siemens IT Solutions and Services -53/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� PARJobName: job name

� PARJobStatus: job status

� PARUserStatus: user status

� PARJobTarget: functional target in case of a generic job

� PARInstanceName: instance name in case of a generic job

� PARLoadID: load id

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� RA_InitUserStatus calls the routine SetUserStatus to initialize the user status of the WatchDog.

� EC_GetRunID executes the shell script getRunID.sh, to fetch a run id, i.e. a unique identification of the
current execution of the “watched” job or sequence. If the script fails, the RA_RaiseFailed0 routine
activity sets the Watchdog user status to 3 (error) by calling the SetUserStatus routine and the
JTA_TraceFailed0 terminator activity sends a stop request to all running jobs in the sequence and
stops the sequence cleanly.

� in case of success of the previous script, there are 2 possible branches to follow, the
RA_SetUserStatusJob, for a job (i.e. no user status is defined), and RA_SetUserStatusSeq, for a
sequence. Both branches set the Watchdog user status:

� for a “watched” job, the user status is set equal to the job status of this job;

� for a “watched” sequence, if the job status of this sequence is different from success (DSJS.RUNOK
or 1), the user status is set to error (DSJS.RUNFAILED or 3, this means that even a warning is
considered as severe in the case of sequence), otherwise the user status is set equal to the current
user status of the sequence.

� when dealing with a job, EC_RecordCounting executes the shell script recordCounting.sh. If the script
fails, the RA_RaiseFailed1 routine activity sets the Watchdog user status to 3 (error) by calling the
SetUserStatus routine and the JTA_TraceFailed1 terminator activity sends a stop request to all running
jobs in the sequence and stops the sequence cleanly.

� both flows are merged again.

� UVA_GetCurrentUserStatus stores the current user status in a user variable, for later use.

� the routine activity RA_GetJobStartTime retrieves the start time of the job or sequence, via a call to
GetJobInfo, with PARJobName and DSJ.JOBSTARTTIMESTAMP as parameters.

 Herakles

©2009 Siemens IT Solutions and Services -54/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

� the routine activity RA_GetJobEndTime retrieves the end time of the job or sequence, via a call to
GetJobEndTime, with PARJobName as parameter.

� the routine activity RA_GetJobElapsed retrieves the elapsed time of the job or sequence, via a call to
GetJobInfo, with PARJobName and DSJ. JOBELAPSED as parameters.

� UVA_GetJobInstanceWithoutPoint stores the job instance name without a ‘.’ into a user variable. This
variable will be used as unique invocation id when calling the multiple instance job TECH_TRACE_RUN.

� JA_TECH_TRACE_RUN executes the job TECH_TRACE_RUN which stores the tracing information in
the table SAR_RUN.

� finally, RA_SetFinalUserStatus set the Watchdog user status equal to the job status of
TECH_TRACE_RUN and in case of error, the JTA_TraceFailed2 terminator activity sends a stop
request to all running jobs in the sequence and stops the sequence cleanly.

Used in

� all sequences

Related component(s)

� N/A

getRunID.sh

The getRunID.sh script fetches a unique identifier from a DB2 sequence generator.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

The generated run id.

Return code

0 in case of success, <> 0 otherwise

Processing

After validation of the passed arguments, a connection to DB2 is made. Via a ‘next value’ command, a
unique identifier is fetched from the staging area sequence SEQ_RUNID into a script variable.

The variable value is outputted and the DB2 connection and script are terminated.

 Herakles

©2009 Siemens IT Solutions and Services -55/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

GetJobInfo

This routine is used to retrieve the DataStage job information.

Parameter(s)

� the job name

� the type of information requested (DSJ.JOBSTARTTIMESTAMP or DSJ.JOBELAPSED)

Return value

The requested information

Processing

The requested information is fetched via the Universal Basic command DSGetJobInfo.

GetJobEndTime

This routine is used to retrieve the DataStage job information for the end time of a job.

Parameter(s)

� the job name

Return value

The end time of the job

Processing

The end time is fetched via the Universal Basic command DSGetJobInfo (hJob1,
DSJ.JOBLASTTIMESTAMP). The GetJobInfo routine above is not used because the
DSJ.JOBLASTTIMESTAMP constant is not recognized when used in a sequencer.

 Herakles

©2009 Siemens IT Solutions and Services -56/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

InitUserStatus

This routine initialises the DataStage user status of the calling job sequence.

Parameter(s)

� the initialisation user status.

Return value

Always 0.

Processing

The user status is initialised via the Universal Basic function: Call DSSetUserStatus (vUserStatus).A user
status greater than DSJS.RUNFAILED is assimilated to DSJS.RUNFAILED.

GetUserStatus

This routine retrieves the DataStage user status of the calling job sequence.

Parameter(s)

� a dummy parameter is passed because a DataStage routine requires at least one parameter.

Return value

The possible return values are DSJS.RUNOK (or 1), DSJS.RUNWARN (or 2) or DSJS.RUNFAILED (or 3).

Processing

The user status is fetched via the Universal Basic command DSGetJobInfo (DSJ.ME, DSJ.USERSTATUS).

SetUserStatus

This routine sets the DataStage user status of the calling job sequence.

Parameter(s)

� the user status to be set.

Return value

Always 0.

Processing

The user status is initialised via the Universal Basic function: Call DSSetUserStatus (vUserStatus).A user
status greater than DSJS.RUNFAILED is assimilated to DSJS.RUNFAILED. The user status passed as
parameter is only set if it is greater than the current user status.

 Herakles

©2009 Siemens IT Solutions and Services -57/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

TECH_TRACE_RUN

The TECH_TRACE_RUN job logs the run time information of a job or sequence in the SAR_RUN repository
table.

Parameter(s)

� PARJobName: job name

� PARJobTarget: functional target in case of a generic job

� PARJobInstance: instance name in case of a generic job

� PARJobStatus: job status

� PARLoadID: load id

� PARJobStartTime: job start timestamp

� PARJobEndTime: job end timestamp

� PARJobDuration: job elapsed time

� PARRunID: run id

Main stages

� the row generator RGN_CreateDummy creates an empty record.

� the column generator CGN_ImportParams adds fields corresponding to the input parameters
(T_I_DOEL= #PARJobTarget#, T_I_INST= #PARJobInstance#, N_I_JOB_STATU= #PARJobStatus#,
C_LOAD_LOAD_TK= #PARLoadID#, S_I_DEBUT_I= #PARJobStartTime#, S_I_FIN_I=
#PARJobEndTime#, N_I_DUREE= #PARJobDuration#, C_I_RUN_TK= #PARRunID#).

� MOD_ToTimestamp changes the fields S_I_DEBUT_I and S_I_FIN_I to the field name without the ‘_I’
and adapts their format to a format DB2 understands.

� finally the DB2 Stage DB2_RUN_I inserts the record into the SAR_RUN repository table.

 Herakles

©2009 Siemens IT Solutions and Services -58/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SCErrorLog

This shared container (generic job) is used to store in the SAR_ERROR_LOG repository table the logical
errors and warnings (wrong record structure, key not filled in, date converted to default,…) that are trapped
within the jobs (see also [R03]).

Where the logical errors (wrong record structure, key not filled) give rise to a rejected record, which is not
propagated any further, the logical warnings, which are captured via the shared container indicates a quality
issue in the data that could be resolved during execution. The most common example of this is an absent or
an ill formatted date that was replaced by a default value (e.g. PARLoadDate). The record is not rejected but
a logical warning is inserted in the table SAR_ERROR_LOG.

Parameter(s)

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARJobName: job name

� PARTarget: functional target in case of a generic job

� PARInstance: instance name in case of a generic job

� PARErrorCode: error code

Main stages

� two fields are expected as an entry point to the shared container: C_I_REC, the record id (if available)
and T_I_DATA, containing information to be stored in the error log (e.g. a problematic field of the
record).

� the COP_ClearPartition Stage is solely used to avoid a warning when the data will be repartitioned on
the L_ToCGN link.

� CGN_ErrorLog adds the input parameters (PARLoadID, PARJobName, PARTarget, PARInstance, and
PARErrorCode) to the input record.

� finally the DB2 Stage DB2_SAR_ERROR_LOG inserts the record in the SAR_ERROR_LOG table.

 Herakles

©2009 Siemens IT Solutions and Services -59/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

The following table lists the logical errors currently trapped:

Code Type* Description Context

100 W Date replaced

Invalid or missing date replaced by a
default date in a PRTRT,
EXTRC_SPLIT or TRANS_DECTRT
job (see [R03]).

101 W Unknown Code Inserted
Unknown code in a
MREF_TKSEARCH job (see [R03]).

102 W Code out of date chaining

Unknown code at the specified date
in a MREF_TKSEARCH job (see
[R03]).

103 W Missing description after a pivot transformation

None of the pivoted input contains a
description (PRTRT_PIVOT jobs, see
[R03]).

104 W C_ANNULATION <> 0

A cancelled KBOBCE record has
been discarded in a LOAD_SA job
(see [R03]).

105 W More than 3 records for pivot transformation

A pivot transformation based on 3
inputs (specific for the E604 source)
contains more inputs than foreseen.

200 R Invalid Key

The key of the input file is missing or
invalid (PRTRT jobs reading input
files, see [R03]).

201 R Invalid Record Format

The structure of the input file record
is invalid (PRTRT jobs reading input
files, see [R03]).

202 R Invalid Information Type

The information type of a KBOBCE
record is invalid
(PRTRT_SPLIT_KBOBCE jobs, see
[R0]).

203 R Unexisting PTK in manual identification

The data of the
MANUAL_IDENTICIFCATION
source table are incorrect
(LOAD_DWH_IDENT_MANUEEL
job, see [R03]).

* W for warning or R for error leading to a reject.

 Herakles

©2009 Siemens IT Solutions and Services -60/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SCSQLErrorLog

This shared container is designed to trace all DB2 errors leading to a reject and to force the job to abort.
It is used in all LOAD_DWH jobs (see [R03]), because in these jobs, any reject has to be considered has an
error and such behaviour is not configurable at the level of the DB2 stage.

The job aborts, other jobs or sequences started in parallel continue their execution, but no new sequence
and corresponding jobs will be started (see also 3.3.5.1 LOAD_DWH). Nevertheless the final status of the
load data warehouse will be a failure.

Parameter(s)

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARJobName: job name

� PARInstance: instance name in case of a generic job

� PARErrorCode: error code

Main stages

� COP_Rejet uses runtime column propagation, but has to declare the “sqlcode” in order to make it
available for the following stages.

� RDM_SQLCODE keeps only one record for a specific sql error code.

� CGN_ErrorLog adds the input parameters (PARJobName, PARInstance, and PARErrorCode) to the
input record.

� COP_All duplicates the stream

� the first copy is used by PK_Data to log the information in DataStage Director

� the second copy is used by SWT_Error to make the job abort. PARErrorCode has to be different from 0
in the input, because the abortion is generated by a comparison of this value with 0.

� the COP_Fake is only present, because the switch stage requires an output.

 Herakles

©2009 Siemens IT Solutions and Services -61/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

EH_Handler

A global exception handler will be also be placed in every sequence to trap all the errors different from
execution errors and that are not trapped by the DataStage normal mechanisms (in these cases, the jobs do
not return a error code and the sequence quits its normal way abruptly). A typical example of such an error is
a DataStage timeout.

3.3.2.2.1. Record count tracing

recordCounting.sh

The recordCounting.sh script counts the number of records generated by a specific job and inserts the result
in the SAR_FILE repository table.

Parameter(s)

� load id

� job implementation name

� signature Instance

� job target

� run id

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

After validating the arguments, the script determines the expected outputs of the job, counts the number of
records of the effectively present outputs and inserts one row for each of them in the SAR_FILE table.

For the determination of the expected outputs, the script uses:

� the job implementation name, signature instance and job target, on the one side,

� the SAD_JOB and SAD_UTILISATION repository tables on the other side.

 Herakles

©2009 Siemens IT Solutions and Services -62/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.3. Data passing between jobs

As discussed in section 3.1.3.3 Staging Area, every signature and every functional job has its own directory
and within a job directory, symbolic links are made (automated at roll-out time) towards the signature
directory. This means that there we will never need to move datasets from one job’s output to the next job’s
input. This mechanism, in combination with the “overwrite” mode at the output of a job also implies that upon
a failed execution of a job, no special actions are to be taken to place the job and its surrounding
components back into its initial state. The need to move or rename files will no longer exist (biggest
advantage for restart).

Apart from the passing of actual “mass data” between the jobs, there also exists the need to pass some
“control data” between the evaluate components and the jobs that are executed afterwards. Since, for
reasons of uniformity and simplicity, these evaluate components are implemented as DataStage jobs and
DataStage is incapable of generating data on the standard output “stdout” (or some equivalent), another
mechanism is put in place to pass this control-data: the Evaluator generates a number of temporary files (in
${PARHeraWork}/tmp which are picked up by a UNIX shell script (createCounterList.sh or
createFileCounterList.sh) and passed to the actual job (or loop) using its “stdout”. These scripts are generic
for all communication of this type.

createCounterList.sh

This script, executed after some evaluators, transforms a list of values, under the form of a flat file with one
value per line into a counter parameter for a DataStage loop, under the form of a string with the values
separated by commas. This list is passed to the DataStage loop via the standard output stdout (see also
3.3.2.3 Data passing between jobs).

Parameter(s)

� name of the file containing the list of values (one value per line)

Output

The counter parameter (string with the values separated by commas).

Return code

0 in case of success, <> 0 otherwise

Processing

The input file is read and transformed to a one line comma separated output, via a ‘grep’ commando.

 Herakles

©2009 Siemens IT Solutions and Services -63/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

createFileCounterList.sh

This script, executed after some evaluators, filters a list of values, under the form of a flat file with one value
per line and then also transforms this list into a counter parameter for a DataStage loop, under the form of a
string with the values separated by commas. This list is passed to the DataStage loop via the standard
output stdout (see also 3.3.2.3 Data passing between jobs).

Parameter(s)

� name of the file containing the list of values (one value per line)

� filter to be applied (i.e. a string that the selected lines must contain).

Output

The counter parameter (string with the values separated by commas).

Return code

0 in case of success, <> 0 otherwise

Processing

The input file is read and filtered via a ‘grep’ commando and then transformed to a one line comma
separated output, via an ‘awk’ commando.

 Herakles

©2009 Siemens IT Solutions and Services -64/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.4. Stateful jobs

As explained in [R01], stateful jobs are jobs that generate their output based on the current input and a
“state” that was generated or updated by all previous executions of that job. It is imperative that this state is
strictly managed. All implementations will follow the following general principles.

� If a job finishes OK, no further action is taken with respect to the state.

� If any state related action is needed, like a move of the newly generated state to make it accessible at
the input of the job, this will be done before job execution.

The careful handling of states also contributes to the full restart capability of the system.

moveNew2Current.sh

This script will move a ‘new’ dataset to ‘current’ dataset. It is called in all sequences calling a stateful job,
just before this job is called.

Parameter(s)

� signature name

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

Based on the signature name, a first check is conducted on the existence of the NEW dataset.

If the NEW dataset exists,

� a second check is conducted on the existence of a CURRENT dataset.
If the CURRENT dataset already exists, the script deletes it, via an ‘orchadmin delete’ command.

� NEW dataset is moved to CURRENT, via a Unix ‘mv‘ command.

If the signature name is missing or invalid, or if a delete or move fails, an error code different from 0 is
returned, otherwise 0 is returned.

moveCurrent2New.sh

This script has the same behaviour as the preceding one, but in the opposite direction, from ’current’ to new.
It is only used in the level 3 sequence SEQ_3_EXTRC_KBOBCE_FEKBO for the state
KBOBCE_FEKBO_PERSONNE_MORALE. It is called in case of failure of the job
TRANS_DECTRT_KBOBCE_FEKBO_050_550, i.e. the job feeding this state.

3.3.2.5. Evaluators

A number of evaluators will be needed to evaluate

� Which load-ids have to be treated (EVAL_LOAD)

� Which files have to be treated (EVAL_LOAD_TABLE)

� Which files have to be treated and which target they will generate (EVAL_LOAD_TABLE_TARGET)

� Which targets will be generated (EVAL_LOAD_TARGET and EVAL_TARGET).

All these evaluators will be described in the next sections.

 Herakles

©2009 Siemens IT Solutions and Services -65/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.1. TECH_EVAL_INIT_REF

The TECH_EVAL_INIT_REF job creates a reference list in the TMP Herakles project folder which contains
all the jobs that have to be executed when doing a rollout.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� DB2_GetCandidates queries the SAD_UTILISATION and SAD_JOB tables to fetch all the jobs, job
implementation names and signatures that are used in step ‘ROLLOUT’.

� FF_SAR_INIT_REF stores this information in a ‘:’ separated sequential file
#$PARHeraWork#/tmp/SAR_INIT_REF

Used in

� SEQ_3_INIT_REF_GENERIC

Related component(s)

� the createFileCounterList.sh shell script will be used in SEQ_4_INIT_STATE_REF_(NO)ACRONYM to
extract from the generated list, a comma separated list of the jobs of implementation
INIT_REF_(NO)ACRONYM. This new list will be presented to a DataStage loop via the standard output
stdout (see also 3.3.2.3 Data passing between jobs).

 Herakles

©2009 Siemens IT Solutions and Services -66/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.2. TECH_EVAL_INTAKE

The TECH EVAL INTAKE job creates, in the TMP Herakles project folder, a reference list, which contains all
the sources which are ready for intake.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� DB2_SAR_INCOMING queries the SAR_INCOMING table to retrieve all the sources, having a
T_I_STATU equal to ‘R’ (ready for intake), with their tables and corresponding file names, extraction,
arrival and transfer dates and times.

� COP_SAR_INCOMING duplicates the stream.

� the first copy is used by DB2_SAR_INCOMING_U to update the T_I_STATU of SAR_INCOMING to ‘I’
(intake in progress).

� the second copy is used by FF_SAR_INCOMING to store the information in a ‘:’ separated sequential file
#$PARHeraWork#/tmp/SAR_INCOMING

Used in

� SEQ_1_INTAKE

Related component(s)

� the moveFtp2Landing.sh shell script, called in SEQ_1_INTAKE, will use the stored information

� the TECH_CONSOL_INTAKE job is the corresponding consolidator, also called in SEQ_1_INTAKE.

 Herakles

©2009 Siemens IT Solutions and Services -67/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.3. TECH_EVAL_LOAD

The TECH_EVAL_LOAD job creates, in the TMP Herakles project folder, a reference list, which contains all
the load ids for a certain source and step. It is used by source centric sequences (EXTRC and TRANSL) at
source level.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARSource: name of the source

� PARStep: value of the step (N_I_STAP)

� PARSequence: sequence (EXTRC, TRANSF) that called the evaluator

Main stages

� DB2_SAR_LOAD queries the SAR_LOAD table to retrieve, for the specified source and step, all the load
ids and their corresponding extraction dates and times, having a T_I_STATU equal to ‘R’ (ready for next
step).

� COP_State duplicates the stream.

� the first copy is used by DB2_SAR_LOAD_U. It does not update the T_I_STATU of SAR_LOAD to ‘I’ (in
progress) but leaves it to ‘R’. Each load id will be set to ‘R’ at the sequence 2 level, when the load id is
effectively treated. This stage has been kept to allow possible future changes of T_I_STATU (e.g. ‘W’,
waiting).

� the second copy is used by FF_SAR_LOAD_SEQ_SRC to store the information in a ‘:’ separated
sequential file #$PARHeraWork#/tmp/SAR_LOAD_<PARSequence>_<PARSource>.

 Herakles

©2009 Siemens IT Solutions and Services -68/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Used in

� SEQ_1_EXTRC_*

� SEQ_1_TRANSF_*

Related component(s)

� the createCounterList.sh shell script will be used in the same sequences to create from the generated
list, a comma separated list, which will be presented to a DataStage loop via the standard output stdout
(see also 3.3.2.3 Data passing between jobs).

� the TECH_EVAL_LOAD_TABLE will further evaluate each load id at table level in the corresponding
level 2 sequences.

� the TECH_CONSOL_LOAD job is the corresponding consolidator, also called in the same level 1
sequences.

 Herakles

©2009 Siemens IT Solutions and Services -69/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.4. TECH_EVAL_LOAD_TABLE

The TECH_EVAL_LOAD_TABLE job creates, in the TMP Herakles project folder, a reference list, which
contains all the tables for a certain source, load id and step. It is used by source centric sequences at source
table level.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARSource: name of the source

� PARLoadID: load id

� PARStep: value of the step (N_I_STAP)

� PARSequence: sequence (EXTRC, TRANSF) that called the evaluator

 Herakles

©2009 Siemens IT Solutions and Services -70/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� DB2_SAR_LOAD_TABLE queries the SAR_LOAD, SAR_LOAD_TABLE and SAD_BRON_TABLE
tables to retrieve, for the specified source, load id and step, all the tables and their corresponding load id
and extraction date and time, having a T_I_STATU equal to ‘R’ (ready for next step) and having a step
(N_I_STAP) less than their maximum step (N_I_MAX_STAP) defined in SAD_BRON_TABLE.

� COP_State duplicates the stream.

� the first copy is used by DB2_SAR_LOAD_TABLE_U to update the T_I_STATU of SAR_LOAD_TABLE
to ‘I’ (in progress).

� the second copy is by FF_SAR_LOAD_TABLE_SEQ_SRC to store the information in a ‘:’ separated
sequential file #$PARHeraWork#/tmp/SAR_LOAD_TABLE_<PARSequence>_<PARSource>.

� the DB2_SAR_LOAD selects the load id from SAR_LOAD and DB2_SAR_LOAD_U updates its
T_I_STATU to ‘I’ (in progress).

Used in

� SEQ_2_EXTRC_*

� SEQ_2_TRANSF_*

Related component(s)

� the createFileCounterList.sh shell script will be used in the same sequences to check if one or more
specific tables are present in the temporary file (i.e. ready to be processed), before calling the level 3
sequence that processes this table or these tables.

� the TECH_CONSOL_LOAD_TABLE job is the corresponding consolidator, also called in the same level
2 sequences.

 Herakles

©2009 Siemens IT Solutions and Services -71/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.5. TECH_EVAL_LOAD_TABLE_TARGET

The TECH_EVAL_LOAD_TABLE_TARGET job creates, in the TMP Herakles project folder, a reference list,
which contains, for a certain generic source, load id and step, all the tables and their corresponding load ids,
job implementations processing them, instances and targets. This evaluator is specific for generic sources,
i.e. sources containing several tables with the same structure.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARStep: value of the step (N_I_STAP)

� PARSequence: sequence (EXTRC, TRANSF) that called the evaluator

� PARTarget: target (currently not used).

Main stages

� DB2_SAR_LOAD_TABLE_R queries the SAR_LOAD, SAR_LOAD_TABLE, SAR_FILE, SAD_JOB and
SAD_UTILISATION tables to retrieve, for the specified source, load id and step, all the tables and their
corresponding load id, job implementations processing them, instances and targets, having a
T_I_STATU equal to ‘R’ (ready for next step).

 Herakles

©2009 Siemens IT Solutions and Services -72/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

� COP_State duplicates the stream.

� the first copy is used by DB2_SAR_LOAD_TABLE_U to update the T_I_STATU of SAR_LOAD_TABLE
to ‘I’ (in progress).

� the second copy is by FF_SAR_LOAD_TABLE_SEQ_SRC to store the information in a ‘:’ separated
sequential file #$PARHeraWork#/tmp/SAR_LOAD_TABLE_TARGET_<PARSequence>_<PARSource>.

� the DB2_SAR_LOAD selects the load id from SAR_LOAD and DB2_SAR_LOAD_U updates its
T_I_STATU to ‘I’ (in progress).

Used in

� SEQ_2_EXTRC_HARDCODED and potentially in the future for other generic sources.

Related component(s)

� the createFileCounterList.sh shell script will be used

· in the level 3 sequences SEQ_3_EXTRC_HARDCODED_ACRONYM and
SEQ_3_EXTRC_HARDCODED_NOACRONYM, to extract from the generated list, a comma
separated list, which will be presented to a DataStage loop via the standard output stdout (see
also 3.3.2.3 Data passing between jobs).

· in the level 3 sequence SEQ_3_EXTRC_HARDCODED_SPECIFIC, to check if one specific
table is present in the temporary file (i.e. ready to be processed), before calling the job that
processes this table.

� the TECH_CONSOL_LOAD_TABLE job is the corresponding consolidator, also called in the same level
3 sequences.

 Herakles

©2009 Siemens IT Solutions and Services -73/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.6. TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE _GENERAL

The TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE_GENERAL job is especially designed for the
processing of the PRTRT_PIVOT_KBOBCE_CODE_GENERAL generic job for the KBOBCE source. This
job creates, in the TMP Herakles project folder, a reference list, which contains all the functional jobs and
corresponding targets for this job implementation (generic job).

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� DB2_SAD_JOB queries the SAD_JOB and SAD_UTILISATION tables to retrieve all the functional jobs
and targets, corresponding to the job implementation PRTRT_PIVOT_KBOBCE_CODE_GENERAL.

� FF_PRTRT_PIVOT_KBOBCE_CODE_GENERAL stores the information in a ‘:’ separated sequential file
#$PARHeraWork#/tmp/PRTRT_PIVOT_KBOBCE_CODE_GENERAL.

Used in

� SEQ_4_PRTRT_PIVOT_KBOBCE_CODE_GENERAL.

Related component(s)

� the createCounterList.sh shell script will be used in the same sequences to create from the generated
list, a comma separated list, which will be presented to a DataStage loop via the standard output stdout
(see also 3.3.2.3 Data passing between jobs).

 Herakles

©2009 Siemens IT Solutions and Services -74/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.7. TECH_EVAL_TARGET_PRTRT_ LOAD_PLDA_CT_COD E_TABLE_TYPE

The TECH_EVAL_TARGET_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE job is especially designed
for the processing of the PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE generic job for the PLDA_CT
source. This job creates, in the TMP Herakles project folder, a reference list, which contains all the
functional jobs and corresponding targets for this job implementation (generic job).

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� DB2_SAD_JOB queries the SAD_REF_BRON_TABLE_VENTILATION table to retrieve all the functional
jobs and targets, corresponding to the job implementation PRTRT_
LOAD_PLDA_CT_CODE_TABLE_TYPE.

� FF_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE stores the information in a ‘:’ separated
sequential file #$PARHeraWork#/tmp/PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE.

Used in

� SEQ_4_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE.

Related component(s)

� the createCounterList.sh shell script will be used in the same sequences to create from the generated
list, a comma separated list, which will be presented to a DataStage loop via the standard output stdout
(see also 3.3.2.3 Data passing between jobs).

 Herakles

©2009 Siemens IT Solutions and Services -75/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.8. TECH_EVAL_LOAD_NOSRC

The TECH_EVAL_LOAD_NOSRC job creates, in the TMP Herakles project folder, a reference list, which
contains all the load ids for a certain step and sets the T_I_STATU of these load ids to ‘I’ (in progress). This
evaluator is used by the level 1 TRANSL sequence, to freeze the list of load ids that will be processed by a
given occurrence of this sequence.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARStep: value of the step (N_I_STAP)

� PARSequence: sequence (TRANSL) that called the evaluator

Main stages

� DB2_SAR_LOAD queries the SAR_LOAD table to retrieve, for the specified step, all the load ids and
their corresponding extraction dates and times, having a T_I_STATU equal to ‘R’ (ready for next step).

� COP_State duplicates the stream.

� the first copy is used by DB2_SAR_LOAD_U to update the T_I_STATU of SAR_LOAD to ‘I’ (in
progress).

� the second copy is used by FF_SAR_LOAD_SEQ to store the information in a ‘:’ separated sequential
file #$PARHeraWork#/tmp/SAR_LOAD_<PARSequence>. Currently this file is not used anymore.

 Herakles

©2009 Siemens IT Solutions and Services -76/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Used in

� SEQ_1_TRANSL

Related component(s)

� the TECH_EVAL_TARGET_TRANSL will further process all load ids in the level 2 TRANSL sequences.

� the TECH_CONSOL_ALL_COND job consolidates all load ids in the same level 1 sequence.

 Herakles

©2009 Siemens IT Solutions and Services -77/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.9. TECH_EVAL_TARGET_TRANSL

The TECH_EVAL_TARGET_TRANSL job creates, in the TMP Herakles project folder, a reference list, which
contains all the input signature instances, the job implementations that process them and the corresponding
load ids, instances and targets that are ready for the TRANSL (these load ids have been selected by the
evaluator in the level 1 sequence. This job is designed for target centric sequences that do not process their
inputs load id per load id, i.e. each job in the subsequences will process all its available inputs for all load ids.
It has to be made specific for the TRANSL, because it uses the structure of the signatures and signature
instances names to determinate the instances and targets.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARTarget: target for which this evaluator is called

Main stages

� DB2_GetCandidates queries the SAD_SIGNATURE_INSTANCE, SAD_JOB, SAD_UTILISATION,
SAR_LOAD and SAR_FILE tables to retrieve all the input signature instances, the job implementations
that process them and the corresponding load ids, instances and targets that are ready for the TRANSL,
i.e. correspond to tables with a N_I_STAP equal to 10 and T_I_STATU equal to ‘I’ (set by the evaluator
in the level 1 sequence) in SAR_LOAD.

� RMD_Files removes the potential duplicates.

� COP_DBFile copies the stream.

� FF_SAR_TARGET_SEQUENCE_TARGET stores the information in a ‘:’ separated sequential file
#$PARHeraWork#/tmp/SAR_TARGET_TRANSL#PARTarget#.

Used in

� SEQ_2_IDENT_* and SEQ_2_MREF_*

 Herakles

©2009 Siemens IT Solutions and Services -78/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Related component(s)

� the createCounterList.sh shell script will be used in the SEQ_3_IDENT_* and SEQ_3_MREF_*
sequences to extract from the generated list, a comma separated list, which will be presented to a
DataStage loop via the standard output stdout (see also 3.3.2.3 Data passing between jobs).

� the TECH_CONSOL_LOAD_COND job is the corresponding consolidator, called in the level 1
SEQ_1_TRANSL sequence.

 Herakles

©2009 Siemens IT Solutions and Services -79/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.10. TECH_EVAL_TARGET_LOAD_SA

The TECH_EVAL_TARGET_LOAD_SA job creates, in the TMP Herakles project folder, a reference list,
which contains all the input signature instances, the job implementations that process them and the
corresponding load ids, instances and targets that are ready for the LOAD_SA. This job is designed for
target centric sequences that do not process their inputs load id per load id, i.e. each job in the
subsequences will process all its available inputs for all load ids. It has to be made specific for the
LOAD_SA, because it uses the structure of the signatures and signature instances names to determinate the
instances and targets.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARTarget: target for which this evaluator is called

Main stages

� DB2_GetCandidates queries the SAD_SIGNATURE_INSTANCE, SAD_JOB, SAD_UTILISATION,
SAR_LOAD and SAR_FILE tables to retrieve all the input signature instances, the job implementations

 Herakles

©2009 Siemens IT Solutions and Services -80/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

that process them and the corresponding load ids, instances and targets that are ready for the
LOAD_SA, i.e. correspond to load ids with a N_I_STAP equal to 30 in SAR_LOAD and having
something to process in the LOAD_SA.

� RMD_Files removes the potential duplicates.

� COP_DBFile duplicates the stream.

� the first copy is used by DB2_SAR_LOAD_U to update the T_I_STATU of SAR_LOAD to ‘I’ (in
progress). This copy will be first merge with other load ids, see DB2_GetAllLoad, FUN_AllLoads,
RMD_SingleLoads below.

� the second copy is used by FF_SAR_TARGET_SEQUENCE_TARGET to store the information in a ‘:’
separated sequential file #$PARHeraWork#/tmp/SAR_LOAD_LOAD_SA#PARTarget#

� DB2_GetAllLoads selects all load ids with a N_I_STAP equal to 30 and T_I_STATU equal to ‘R’ (ready
for next step) in SAR_LOAD, even those having nothing to process in the LOAD_SA.

� FUN_AllLoads merges the two sets of load ids (first copy of COP_DBFile and DB2_GetAllLoads).

� RMD_SingleLoads removes potential duplicates.
.

Used in

� SEQ_1_LOAD_SA

� SEQ_3_LOAD_SA_<SUBJECT>_DIM, for a re-evaluation, when a child class generates new inputs for
its parent class (e.g. A0301_PERSONNE_MORALE for A0101_PERSONNE).

Related component(s)

� the createCounterList.sh shell script will be used in the SEQ_4_LOAD_SA_* sequences to extract from
the generated list, a comma separated list, which will be presented to a DataStage loop via the standard
output stdout (see also 3.3.2.3 Data passing between jobs).

� the TECH_CONSOL_LOAD_COND job is the corresponding consolidator, also called in the same level
1 sequence.

 Herakles

©2009 Siemens IT Solutions and Services -81/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.11. evalLoadDWH.sh

This script is the evaluator for the LOAD_DWH step. The load of the data warehouse will start in two cases:

� all delivered sources are in a state ready for loading, or

� some delivered sources are in a state ready for loading and the drop dead time has been reached.

For this evaluator, a shell script has been used instead of a DataStage job, because its logic can be
expressed in a much more simple and natural manner this way.

Parameter(s)

� name of the output file containing the load ids to be loaded, namely SAR_LOAD_DWH

� drop dead time (defined at DataStage project level)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

A connection is made to the DB2 database and to the script checks which delivered sources have reached
their loading point by querying the N_I_STAP of the SAR_LOAD table in conjunction with the
N_I_MAX_STAP of the SAD_BRON_TABLE table.

If the drop dead time is not yet reached and some delivered sources are not ready, the connection to db2 is
terminated and the output file is empty.

If the all the delivered sources are ready or the drop dead time is reached and some delivered sources are
ready, the impacted load ids are stored in the output file and their status is updated to status ‘I’ (in progress)
in SAR_LOAD table.

Used in

� SEQ_1_LOAD_DWH

Related component(s)

� the consolLoadDWH.sh script is the corresponding consolidator, also called in the same level 1
sequence.

 Herakles

©2009 Siemens IT Solutions and Services -82/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.5.12. TECH_EVAL_TARGET_LOAD_DWH_REF

The TECH_EVAL_TARGET_LOAD_DWH_REF job creates, in the TMP Herakles project folder, a reference
list, which contains the information needed for the execution of the generic LOAD_DWH referential jobs, i.e.
the job implementations and the corresponding targets, with their natural and technical key names.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� DB2_SAD_JOB queries the SAD_JOB, SAD_UTILISATION and SAD_REF_NOM_CHAMP tables to
retrieve, all the job implementations and the corresponding targets, with their natural and technical key
names. RMD_JobImplSignatInst removes the potential duplicates.

� RMD_Target removes the potential duplicates

� FF_LOAD_DWH_REF_GENERIC stores the information in a ‘:’ separated sequential file
#$PARHeraWork#/tmp/LOAD_DWH_REF_GENERIC

Used in

� SEQ_3_LOAD_DWH_REF_GENERIC.

Related component(s)

� the createFileCounterList.sh shell script will be used in the
SEQ_4_LOAD_DWH_REF_GENERIC_NOACRONYM and
SEQ_4_LOAD_DWH_REF_GENERIC_ACRONYM sequences to extract from the generated list, a
comma separated list, which will be presented to a DataStage loop via the standard output stdout (see
also 3.3.2.3 Data passing between jobs).

 Herakles

©2009 Siemens IT Solutions and Services -83/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.6. Consolidators

3.3.2.6.1. TECH_CONSOL_INTAKE

The TECH CONSOL INTAKE job consolidates the result of the level 1 intake sequence. It fills in the
SAR_LOAD, SAR_LOAD_TABLE and SAR_FILE tables, and updates the SAR_INCOMING table in case of
success. It only updates the SAR_INCOMING table otherwise.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

 Herakles

©2009 Siemens IT Solutions and Services -84/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� FF_SAR_INTAKE_FAILED and FF_SAR_INTAKE_OK read, in the Herakles temporary directory, the
files SAR_INCOMING_FAILED, SAR_INCOMING_OK created by the moveFtp2Landing.sh shell script.
SAR_INCOMING_FAILED contains the sources, source tables and file names, for which the move from
the FtpZone to the LandingZone failed. SAR_INCOMING_OK contains the sources, source tables, file
names, load ids, record counts and extraction dates and times, for which the move from the FtpZone to
the LandingZone succeeded.

� for the failed intakes DB2_SAR_INCOMING_I updates the T_I_STATU of SAR_INCOMING to ‘F’ (intake
failed).

� for the successful intakes, LKP_GetTimes retrieves, for each source table, the extraction, arrival and
transfer dates and times from the SAR_INCOMING table.

� for the successful intakes, COP_Intake multiplies the stream.

� the first copy is used, after a clear partition to avoid warnings (COP_ClearPartition) and remove
duplicates (RMD_SAR_LOAD), to insert records in the SAR_LOAD table (DB2_SAR_LOAD_IU).

� the second copy is used to insert records in the SAR_LOAD_TABLE table
(DB2_SAR_LOAD_TABLE_IU).

� the third copy is used, after a transformation to generate the signature instance
(TRF_Get_T_SIGNATINST_SIGNAT_INST), to insert records in the SAR_FILE table
(DB2_SAR_FILE_IU).

� for the successful intakes, DB2_SAR_INCOMING_IU updates the T_I_STATU of SAR_INCOMING to ‘O’
(intake OK).

Used in

� SEQ_1_INTAKE

Related component(s)

� the TECH_EVAL_INTAKE job is the corresponding evaluator, also called in SEQ_1_INTAKE.

� the moveFtp2Landing.sh shell script, called in SEQ_1_INTAKE, furnishes the information necessary for
the consolidation

 Herakles

©2009 Siemens IT Solutions and Services -85/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.6.2. TECH_CONSOL_LOAD

The TECH_CONSOL_LOAD job consolidates the results of the processing of source instances (load ids) in
source centric sequences.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARSource: name of the source

� PARThisStep: sequence (EXTRC, TRANSF) that called the evaluator

� PARStepValue: value of the step (N_I_STAP) to advance to

 Herakles

©2009 Siemens IT Solutions and Services -86/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� DB2_GetStatus queries the SAD_BRON_TABLE, SAD_SIGNATURE_INSTANCE, SAD_UTILISATION,
SAR_LOAD and SAR_LOAD_TABLE tables to retrieve, for the specified source and calling sequence,
all the sources and load ids, in a step lower than the step to be advanced to, and their source tables and
steps.

� TRF_ValidateStatus computes the success or failure for each load id, by looping over the steps of all
corresponding source tables: a load id is successful only if all its source tables are successful.

� DB2_GetAllLoads retrieves in SAR_LOAD all load ids being processed by the sequence (N_I_STAP 0 or
20 and T_I_STATU = ‘I’ (in progress)).

� FUN_GetAllLoads merges this set with the result of TRF_ValidateStatus.

� RD_LastValid retains the final status per load id.

� FIL_Valid filters the successful load ids on the one side and the failed ones on the other side.

� DB2_SAR_LOAD_Valid_U updates the N_I_STAP of the SAR_LOAD table to PARStepValue and the
T_I_STATU to ‘R’ (ready).

� DB2_SAR_LOAD_Invalid_U only updates the T_I_STATU of the SAR_LOAD table to ‘R’ (ready).

Used in

� SEQ_1_EXTRC_*

� SEQ_1_TRANSF_*

Related component(s)

� the TECH_CONSOL_LOAD_TABLE performs the same consolidation at source table level in the
corresponding level 2 sequences, or level 3 sequences for generic sources.

� the TECH_EVAL_LOAD job is the corresponding evaluator, also called in the same level 1 sequences.

 Herakles

©2009 Siemens IT Solutions and Services -87/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.6.3. TECH_CONSOL_LOAD_TABLE

The TECH_CONSOL_LOAD_TABLE job consolidates the results of the processing of a table of a source
instance (load id) in source centric sequences.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARSource: name of the source

� PARLoadID: load id

� PARSourceTable: name of the source table

� PARThisStep: sequence (EXTRC, TRANSF) that called the evaluator

� PARNextStep: value of the step (N_I_STAP) to advance to

 Herakles

©2009 Siemens IT Solutions and Services -88/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� DB2_GetStatus queries the SAD_BRON_TABLE, SAD_SIGNATURE_INSTANCE, SAD_UTILISATION,
SAD_JOB, SAR_LOAD_TABLE and SAR_FILE tables to retrieve, for the specified source, load id,
source table and calling sequence, the record counts of all the files that had to be generated.

� TRF_ValidateStatus computes the success or failure, by looping over the record counts and checking
that they are not undefined.

� RD_LastValid retains the final status.

� FIL_Valid filters a success on the one side or a failure on the other side.

� DB2_SAR_LOAD_TABLE_Valid_U updates the N_I_STAP of the SAR_LOAD_TABLE table to
PARNextStep and the T_I_STATU to ‘R’ (ready).

� DB2_SAR_LOAD_TABLE_Invalid_U only updates the T_I_STATU of the SAR_LOAD_TABLE table to
‘R’ (ready).

Used in

� SEQ_2_EXTRC_*

� SEQ_2_TRANSF_*

� SEQ_3_EXTRC_HARDCODED_ACRONYM and SEQ_3_EXTRC_HARDCODED_NOACRONYM and
potentially in the future for other generic sources.

Related component(s)

� for non-generic sources, the TECH_EVAL_LOAD_TABLE job is the corresponding evaluator, also called
in the same level 2 sequences.

� for generic sources, the TECH_EVAL_LOAD_TABLE_TARGET job is the corresponding evaluator,
called in the parent level 2 sequence.

 Herakles

©2009 Siemens IT Solutions and Services -89/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.6.4. TECH_CONSOL_ALL_COND

The TECH_CONSOL_ALL_COND job consolidates the results of a certain step globally (all or nothing). This
consolidator is used by target centric sequences that do not process their inputs load id per load id

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARThisStep: current value of the step (N_I_STAP)

� PARNextStep: value of the step (N_I_STAP) to advance to

� PARCondition: success (1) or failure (0). A success is derived from the fact that all subsequences and
jobs have been processed without error.

 Herakles

©2009 Siemens IT Solutions and Services -90/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� DB2_SAR_LOAD queries the SAR_LOAD table to retrieve the load ids currently in step PARThisStep
and with T_I_STATU equal to ‘I’ (in progress). It also adds the PARCondition to the retrieved load ids.

� COP_Load_Table duplicates the stream.

� the first copy is used by Fil_Valid_Load, which filters the successfully processed load ids on the one side
and the unsuccessfully processed load ids on the other side, in order to update SAR_LOAD.

� the second copy is used by Fil_Valid_Load, which filters the successfully processed load ids on the one
side and the unsuccessfully processed load ids on the other side, in order to update
SAR_LOAD_TABLE.

� DB2_SAR_LOAD_Valid_U updates, for the concerned load ids, the N_I_STAP of the SAR_LOAD table
to PARNextStep and the T_I_STATU to ‘R’ (ready).

� DB2_SAR_LOAD_Invalid_U only updates, for the concerned load ids, the T_I_STATU of the
SAR_LOAD table to ‘R’ (ready).

� DB2_SAR_LOAD_TABLE_Valid_U updates, for the concerned load ids, the N_I_STAP of the
SAR_LOAD_TABLE table to PARNextStep and the T_I_STATU to ‘R’ (ready).

� DB2_SAR_LOAD_TABLE_Invalid_U only updates, for the concerned load ids, the T_I_STATU of the
SAR_LOAD_TABLE table to ‘R’ (ready).

Used in

� SEQ_1_TRANSL

� SEQ_1_LOAD_SA

Related component(s)

� the TECH_EVAL_TARGET_TRANSL job is the corresponding evaluator for the TRANSL, called in the
TRANSL level 2 sequences.

� the TECH_EVAL_TARGET_LOAD_SA job is the corresponding evaluator for the LOAD_SA, also called
in the same level 1 sequence.

 Herakles

©2009 Siemens IT Solutions and Services -91/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.6.5. consolLoadDWH.sh

This script is the consolidator for the LOAD_DWH step. It consolidates the result of this step globally (all or
nothing).

For this consolidator, a shell script has been used instead of a DataStage job, to be uniform with the
corresponding evaluator.

Parameter(s)

� name of the input file containing the load ids to be loaded, namely SAR_LOAD_DWH

� indicator of successful (1) or unsuccessful (0) load. A success is derived from the fact that all
subsequences and jobs have been processed without error.

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

If a successful connection is made to the DB2 database, for each load id in the input file, in function of the
value of the success indicator:

� either, in case of success, the N_I_STAP of the SAR_LOAD table is set to 50, its T_I_STATU to ‘R’
(ready) and its S_I_LOAD to Current Timestamp, and the N_I_STAP of the SAR_LOAD_TABLE table is
set to 50 and its T_I_STATU to ‘R’ (ready).

� or, in case of failure, only the T_I_STATU of the SAR_LOAD_TABLE is set to ‘R’ (ready).

Used in

� SEQ_1_LOAD_DWH

Related component(s)

� the evalLoadDWH.sh script is the corresponding evaluator, also called in the same level 1 sequence.

 Herakles

©2009 Siemens IT Solutions and Services -92/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.7. Synchronisation

3.3.2.7.1. SA Outbox – SA

evalOutbox2SA.sh

This script is called in the level 1 LOAD_SA sequence before running the LOAD_SA bridge jobs, because
some of these jobs perform lookups in the referential states generated by TRANSL jobs and placed in the
Outbox by the level 1 TRANSL sequence. It is responsible for the synchronisation between SA Outbox and
SA, by avoiding that the TRANSL sequence overwrites a dataset in the Outbox while a LOAD_SA job is
reading it, or to force the LOAD_SA sequence to wait before running the jobs reading from the Outbox, if the
TRANSL sequence is currently overwriting it.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script first sets the L_I_SA_OVERS_CLOT of the SAR_SYNCHRONISATIE table to 1 for the TRANSL
jobs (T_I_STAP='TRANSL'). This tells the level 1 TRANSL sequence it should not overwrite datasets in the
Outbox (see moveSA2OutboxTransl.sh).

The script then checks the maximum value of the L_I_SA_LEZEN_CLOT of the SAR_SYNCHRONISATIE
table. A value of 1 means the TRANSL sequence has already started the overwriting of the datasets. In this
case the script enters a wait mode and checks periodically (currently every 5 seconds) if the
L_I_SA_LEZEN_CLOT equals 0, meaning the overwriting is finished.

When L_I_SA_LEZEN_CLOT equals 0, the script can exit its wait mode and terminate, and the LOAD_SA
bridge jobs can be run.

Because of the value 1 of L_I_SA_OVERS_CLOT, the TRANSL sequence will not start another overwriting
of the Outbox datasets while the reading is busy (see moveSA2OutboxTransl.sh)..

After the execution of the LOAD_SA bridge jobs, L_I_SA_OVERS_CLOT has to be reset to 0. This is the
responsibility of the consolOutbox2SA.sh script.

 Herakles

©2009 Siemens IT Solutions and Services -93/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

consolOutbox2SA.sh

This script is called in the level 1 LOAD_SA sequence after the SEQ_2_LOAD_SA_BRIDGE execution. It is
the consolidator for the synchronisation between SA Outbox and SA allowing again the overwriting of
datasets in the Outbox.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script simply sets the L_I_SA_OVERS_CLOT of the SAR_SYNCHRONISATIE table to 0 for TRANSL
jobs (T_I_STAP='TRANSL'), meaning that, as regards the LOAD_SA, the TRANSL sequence can overwrite
the datasets in the Outbox.

 Herakles

©2009 Siemens IT Solutions and Services -94/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.7.2. SA Outbox – DWH

evalOutbox2DWH.sh

This script is called in the level 1 LOAD_DWH sequence before running the LOAD_DWH jobs, because
these jobs read the states generated by TRANSL and LOAD_SA jobs and placed in the Outbox by the level
1 TRANSL and LOAD_SA sequences. It is responsible for the synchronisation between SA Outbox and
DWH, by avoiding that the TRANSL or LOAD_SA sequence overwrites a dataset in the Outbox while a
LOAD_DWH job is reading it, or to force the LOAD_DWH sequence to wait before running the jobs reading
from the Outbox, if the TRANSL or LOAD_SA sequence is currently overwriting it.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script first sets the L_I_DWH_OVERS_CLOT of the SAR_SYNCHRONISATIE table to 1. This tells the
level 1 TRANSL and LOAD_SA sequences they should not overwrite datasets in the Outbox (see
moveSA2OutboxTransl.sh and moveSA2OutboxLoadSA.sh).

The script then checks the maximum value of the L_I_SA_LEZEN_CLOT of the SAR_SYNCHRONISATIE
table. A value of 1 means the TRANSL or the LOAD_SA sequence has already started the overwriting of the
datasets. In this case the script enters a wait mode and checks periodically (currently every 5 seconds) if the
L_I_SA_LEZEN_CLOT equals 0, meaning the overwriting is finished.

When L_I_SA_LEZEN_CLOT equals 0, the script can exit its wait mode and terminate, and the LOAD_DWH
jobs can be run.

Because of the value 1 of L_I_DWH_OVERS_CLOT, the TRANSL and LOAD_SA sequences will not start
another overwriting of the Outbox datasets while the reading is busy (see moveSA2OutboxTransl.sh and
moveSA2OutboxLoadSA.sh).

After the execution of the LOAD_DWH jobs, L_I_DWH_OVERS_CLOT has to be reset to 0. This is the
responsibility of the consolOutbox2DWH.sh script.

 Herakles

©2009 Siemens IT Solutions and Services -95/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

consolOutbox2DWH.sh

This script is called in the level 1 LOAD_DWH sequence after the execution of all LOAD_DWH jobs. It is the
consolidator for the synchronisation between SA Outbox and DWH allowing again the overwriting of datasets
in the Outbox.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script simply sets the L_I_DWH_OVERS_CLOT of the SAR_SYNCHRONISATIE table to 0, meaning
that, as regards the LOAD_DWH, the TRANSL and LOAD_SA sequences can overwrite the datasets in the
Outbox.

 Herakles

©2009 Siemens IT Solutions and Services -96/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

moveSA2OutboxTransl.sh

This script is called in the level 1 TRANSL sequence after a successful execution of all underlying level 2
sequences. The script is responsible for moving the contents of the SA to the SA Outbox, as regards the
TRANSL, but taking care that no other process (LOAD_SA or LOAD_DWH) is currently reading the datasets
in the Outbox.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script first looks if the SA-reading side of the outbox (L_I_SA_OVERS_CLOT) is open and go in sleep-
state if not.

The script then sets the L_I_SA_LEZEN_CLOT of the SAR_SYNCHRONISATIE table to 1 for the TRANSL
jobs (T_I_STAP='TRANSL'). This tells the level 1 LOAD_SA and LOAD_DWH sequences they should not
read TRANSL datasets in the Outbox (see evalOutbox2SA.sh and evalOutbox2DWH.sh).

The script then checks the maximum value of the sum of L_I_SA_OVERS_CLOT and
L_I_DWH_OVERS_CLOT of the SAR_SYNCHRONISATIE table. A value of greater or equal to 1 means the
LOAD_SA or the LOAD_DWH sequence has already started the reading of the datasets. In this case the
script enters a wait mode and checks periodically (currently every 5 seconds) if the sum of
L_I_SA_OVERS_CLOT and L_I_DWH_OVERS_CLOT equals 0, meaning the reading is finished.

When the sum of L_I_SA_OVERS_CLOT and L_I_DWH_OVERS_CLOT equals 0, the script can exit its wait
mode and start moving the datasets.

Because of the value 1 of L_I_SA_LEZEN_CLOT, the LOAD_SA and LOAD_DWH sequences will not start
reading the Outbox datasets while the overwriting is busy (see evalOutbox2SA.sh and
evalOutbox2DWH.sh).

After the execution of the move of datasets, the script will reset L_I_SA_LEZEN_CLOT to 0 and terminate.

 Herakles

©2009 Siemens IT Solutions and Services -97/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

moveSA2OutboxLoadSA.sh

This script is called in the level 1 LOAD_SA sequence after a successful execution of all underlying level 2
sequences. The script is responsible for moving the contents of the SA to the SA Outbox, as regards the
LOAD_SA, but taking care that no other process (LOAD_DWH) is currently reading the datasets in the
Outbox.

Parameter(s)

� instance of the staging area DB

� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script first sets the L_I_SA_LEZEN_CLOT of the SAR_SYNCHRONISATIE table to 1 for the LOAD_SA
jobs (T_I_STAP='LOAD_SA’). This tells the level 1 LOAD_DWH sequences they should not read LOAD_SA
datasets in the Outbox (see evalOutbox2DWH.sh).

The script then checks the maximum value of L_I_DWH_OVERS_CLOT of the SAR_SYNCHRONISATIE
table. A value of greater or equal to 1 means the LOAD_DWH sequence has already started the reading of
the datasets. In this case the script enters a wait mode and checks periodically (currently every 5 seconds) if
the value of L_I_DWH_OVERS_CLOT equals 0, meaning the reading is finished.

When the value of L_I_DWH_OVERS_CLOT equals 0, the script can exit its wait mode and start moving the
datasets.

Because of the value 1 of L_I_SA_LEZEN_CLOT, the LOAD_DWH sequence will not start reading the
Outbox datasets while the overwriting is busy (see evalOutbox2SA.sh and evalOutbox2DWH.sh).

After the execution of the move of datasets, the script will reset L_I_SA_LEZEN_CLOT to 0 and terminate.

 Herakles

©2009 Siemens IT Solutions and Services -98/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.2.8. Cleaning

3.3.2.8.1. clean.sh

This script is in charge of truncating the SA Outbox, cleaning up temporary files and datasets for loaded ids
and archiving and cleaning up SAR tables for instances of sources (load ids) that are loaded in the data
warehouse for more than the "retention period" days. This script is called at the end of the level 1
LOAD_DWH sequence after the execution of a successful consolLoadDWH.sh.

Parameter(s)

� name of the input file containing the loaded load ids, namely SAR_LOAD_DWH
� retention period (defined at DataStage project level)
� instance of the staging area DB
� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

At first, the SA Outbox is truncated, and for every load id in the input file, all the landing zone files and
staging area temporary datasets are removed.

Then, a directory is created to store the exports of the staging area runtime tables (SAR) that will be cleaned.
These tables are defined in the parameter file “cleanSARTable.lst” located in the PARHeraWork etc folder

A DB2 export statement is executed for these tables and for load ids that have been loaded in the data
warehouse (N_I_STAP >= 50 in SAR_LOAD) for a period greater than the retention period (based on
S_I_LOAD of SAR_LOAD, retention period and current date).

These tables are then purged by calling the CLEAN_SAR_TABLE procedure defined in cleanSARTable.sql.

3.3.2.8.2. cleanSARTable.sql

This file contains the definition of the CLEAN_SAR_TABLE DB2 procedure. This procedure purges a specific
SAR table (this table has to contain the C_LOAD_LOAD_TK field) for load ids that have been loaded for
more than the "retention period" days.

Parameter(s)

� name of the table to be purged
� date of the oldest information that will be kept. Older information will be purged.

Processing

Load ids that have been loaded in the data warehouse (N_I_STAP >= 50 in SAR_LOAD) for a period greater
than the retention period (based on S_I_LOAD of SAR_LOAD and date passed as parameter) are purged
from the table passed as parameter.

 Herakles

©2009 Siemens IT Solutions and Services -99/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.3. Landing zone

This section and the following ones are intended to give, for each step in the ETL process, a representative
set of the different DataStage sequences that order the execution of the different jobs, described in [R03]),
and technical components, described in the previous sections of this document.

They are neither intended to list and describe exhaustively all the DataStage sequences that have to be
implemented, nor to repeat the role of the different sequence levels described in the Herakles architectural
guidelines [R02].

3.3.3.1. INTAKE

SEQ_1_INTAKE

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARLandingZone: directory of the landing zone

 Herakles

©2009 Siemens IT Solutions and Services -100/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_INTAKE evaluates the sources files that have to be copied (see
TECH_EVAL_INTAKE).

� EC_moveFtp2landing moves the source files (see moveFtp2Landing.sh).

� if the previous script was successful, JA_TECH_CONSOL_INTAKE consolidates the intake (see
TECH_CONSOL_INTAKE).

moveFtp2Landing.sh

This script creates a load id for a new source and copies the source files from the FtpZone to the
LandingZone. After the copy, symbolic links, consisting of the signature names suffixed with the load id, are
created between the staging area signature directories and the LandingZone.

Parameter(s)

� name of the input file containing the loaded load ids, namely SAR_LOAD_DWH
� instance of the staging area DB
� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

After the validation of the passed arguments, the temporary files created by a previous run are cleaned up.

The file SAR_INCOMING is read line per line.

All lines of the input file are parsed. These lines contain the source name, the extraction date and hour and
minute, the table name and the file name. For each new source name – extraction date, hour, minute
combination, a new load id is generated by fetching the SEQ_LOADID DB2 sequence; for each new
extraction date, hour, minute, a directory is created in the LandingZone, named with these extraction date,
hour and minute.

The files are copied from the FtpZone to the LandingZone in the directory with the corresponding extraction
date, hour and minute.

For each file, a record count is executed and a symbolic link, consisting of the signature name suffixed with
the load id, is created between the staging area signature directory and the LandingZone file.

If errors are encountered the temporary file SAR_INCOMING_FAILED is updated with the source name,
table name and file name.

If no error are encountered the temporary file SAR_INCOMING_OK is updated with the source name, table
name, file name, load id, number of records and extraction date.

Both files will be used by TECH_CONSOL_INTAKE for consolidation.

 Herakles

©2009 Siemens IT Solutions and Services -101/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.4. Staging Area

3.3.4.1. EXTRC_SRC

SEQ_1_EXTRC_KBOBCE

This sequence is a typical example of a level 1 EXTRC sequence.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARNumberOfReaders: number of readers to use when reading a flat file (defined at project level).

 Herakles

©2009 Siemens IT Solutions and Services -102/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_LOAD, evaluates the load ids that have to be processed for the source (see
TECH_EVAL_LOAD).

� if the previous job succeeds, EC_CreateList calls createCounterList.sh, which creates a comma
separated list, and, if it is not empty, presents it to the SLA_LoadID loop.

� a user variable activity provides one by one the load id and extraction date to the job activity
JA_SEQ_2_EXTRC_KBOBCE, which calls the corresponding level 2 sequence.

� once the SEQ_2_EXTRC_ KBOBCE terminates, a consolidation is performed through the job activity
JA_TECH_CONSOL_LOAD (see TECH_CONSOL_LOAD).

� RA_GetUserStatus retrieves the consolidated status of the level 2 sequence and its consolidator. If both
succeed, the flow continues by looping into the ELA_LoadID and SLA_LoadID until all load ids are
processed.

� if an error is detected or the loop has ended, the flow is stopped (SANY_End).

 Herakles

©2009 Siemens IT Solutions and Services -103/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_EXTRC_BTWTVA

This sequence is a typical example of a level 2 EXTRC sequence for a source with only one table and with a
level 3 subsequence only processing one table.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

� $PARNumberOfReaders: number of readers to use when reading a flat file (defined at project level).

 Herakles

©2009 Siemens IT Solutions and Services -104/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_LOAD_TABLE evaluates the table that have to be processed for the load id (see
TECH_EVAL_LOAD_TABLE).

� if the previous job succeeds, EC_CreatFileCounterList calls createFileCounterList.sh, which filters the
temporary file created by the evaluator on the table to be processed (in this case BTWSIGNA) and
creates a comma separated list with the result. If this list is not empty,
JA_SEQ_3_EXTRC_BTWTVA_BTWSIGNA calls the corresponding level 3 sequence.

� once the level 3 sequence terminates, a consolidation is done through the job activity
JA_TECH_CONSOL_LOAD_TABLE (see TECH_CONSOL_LOAD_TABLE).

 Herakles

©2009 Siemens IT Solutions and Services -105/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_EXTRC_KBOBCE

This sequence is a typical example of a level 2 EXTRC sequence for a source with several tables and with
some level 3 subsequences processing several tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

� $PARNumberOfReaders: number of readers to use when reading a flat file (defined at project level).

 Herakles

©2009 Siemens IT Solutions and Services -106/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_LOAD_TABLE evaluates the table that have to be processed for the load id (see
TECH_EVAL_LOAD_TABLE).

� if the previous job succeeds, createFileCounterList.sh is called for each table that will be processed by
the level 3 sequence (for example NCOD002 and NCOD003) and creates comma separated lists with
the results. If none of the lists is empty, JA_SEQ_3_EXTRC_KBOBCE_FONCTION calls the
corresponding level 3 sequence.

� once the level 3 sequence terminates, a consolidation per table is done through the job activities
JA_TECH_CONSOL_LOAD_TABLE_* (see TECH_CONSOL_LOAD_TABLE) and the following table(s)
are treated the same way. This is a serial implementation.

 Herakles

©2009 Siemens IT Solutions and Services -107/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_EXTRC_HARDCODED

This sequence is a typical example of a level 2 EXTRC sequence for a generic source.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

Main stages

� JA_TECH_EVAL_LOAD_TABLE_TARGET_PRTRT_LOAD_HARDCODED evaluates the tables to be
processed for the generic source and determinates the corresponding targets (see
EVAL_LOAD_TABLE_TARGET).

� If the evaluator is successful the 3 types of level 3 sequences are executed serially, to avoid overloading
the system and risking a timeout.

 Herakles

©2009 Siemens IT Solutions and Services -108/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_EXTRC_BTWTVA_BTWSIGNA

This sequence is a typical example of a level 3 EXTRC sequence, responsible for the effective job
executions and taking into account the dependencies between jobs.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

� $PARNumberOfReaders: number of readers to use when reading a flat file (defined at project level).

Main stages

� EC_CheckDeltaOutput executes existSignatureInstance.sh to check if
BTWTVA_BTWSIGNA_DELTA.#PARLoadID#.ds signature instance exists. This is done to avoid the

 Herakles

©2009 Siemens IT Solutions and Services -109/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

PRTRT_DELTA job that already succeeded is executed a second time in case of restart. Such a second
execution would result in an empty delta, while the previous non-empty output of the job has possibly not
been treated.

� there are then 3 possible flows to follow:

� ²if the script fails, a user status 3 is raised and the sequence terminates.

� if the output is 0, the PRTR_DELTA signature exists and the execution of the PRTR_DELTA job is
skipped, next step is the job activity EXTRC_SPLIT_BTWTVA_BTWSIGNA.

� if the output is 1, the signature does not exist and the delta needs to be executed.
EC_moveNewToCurrent executes a moveNew2Current.sh of the dataset containing the current
state of the source table and in case of success, JA_PRTRT_DELTA_BTWTVA_BTWSIGNA
executes the job PRTRT_DELTA_BTWTVA_BTWSIGNA.

� after a skip or successful execution of the delta job (SANY_Split),
JA_EXTRC_SPLIT_BTWTVA_BTWSIGNA executes the EXTRC_SPLIT job and in case of success,
JA_TRANS_DECTRT_BTWTVA_BTWSIGNA executes the TRANS_DECTRT job.

existSignatureInstance.sh

This script checks if a given signature instance exists.

Parameter(s)

� name of the signature instance

Output

0 if the signature instance exists, 1 otherwise

Return code

0 in case of success, <> 0 otherwise

Processing

The check of existence is done via a simple test and the resulted is outputted.

 Herakles

©2009 Siemens IT Solutions and Services -110/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_EXTRC_KBOBCE_FEKBO

This sequence is another example of a level 3 EXTRC sequence, responsible for the effective job executions
and taking into account the dependencies between jobs. It is more complex, because the first job
(PRTRT_SPLIT_KBOBCE_FEKBO) splits its input table FEKBO in several tables, each with its own
structure and for each of which an EXTRC_SPLIT job and a TRANS_DECTRT job have to be executed.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

� $PARNumberOfReaders: number of readers to use when reading a flat file (defined at project level).

Main stages

� The main stages are the same as in the previous sequence, but the EXTRC_SPLIT and
TRANS_DECTRT jobs have to be executed for each table. This implementation is serial, to avoid
overloading the system and risking a timeout.

 Herakles

©2009 Siemens IT Solutions and Services -111/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_EXTRC_KBOBCE_CODE_GENERAL

This sequence is a typical example of a level 3 EXTRC sequence calling a level 4 sequence that
encapsulates the execution of a generic job. The first job (PRTRT_SPLIT_KBOBCE_CODE_GENERAL)
splits its input table CODE_GENERAL in several tables, all with the same structure and for each of which a
PRTRT_PIVOT job has to be executed.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

Main stages

� JA_PTRT_SPLIT_KBOBCE_CODE_GENERAL executes the job and in case of success,
JA_SEQ_4_PRTRT_PIVOT_KBOBCE_CODE_GENERAL executes the level 4 sequence
SEQ_4_PRTRT_PIVOT_KBOBCE_CODE_GENERAL.

 Herakles

©2009 Siemens IT Solutions and Services -112/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_EXTRC_HARDCODED_ACRONYM

This sequence is responsible for the execution of the generic implementation of a job for multiple files of a
generic source and for the consolidation of each of these files.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

Main stages

� EC_CreateListAcronym executes createFileCounterList.sh, which filters the temporary file (created by
the evaluator in the level 2 sequence) on the job implementation to be processed (in this case
PRTRT_LOAD_HARDCODED_ACRONYM: ; the ‘:’ sign (the field separator in the file) is used to ensure
an exact identification of the matching lines), creates a comma separated list with the results, and, if it is
not empty, presents it to the SLA_Acronym loop.

� a user variable activity provides one by one the instance, target and source table name to the job activity
JA_PRTRT_LOAD_HARDCODED_ACRONYM which calls the corresponding job.

� JA_TECH_CONSOL_LOAD_TABLE_HARDCODED_ACRONYM executes the consolidation for the
current source table (see TECH_CONSOL_LOAD_TABLE).

� the loop (ELA_Acronym - SLA_Acronym) continues until all input values are processed.

 Herakles

©2009 Siemens IT Solutions and Services -113/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_EXTRC_HARDCODED_SPECIFIC

This sequence is responsible for the execution of the specific (non-generic) jobs of a generic source, and for
the consolidation of the corresponding processed tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

Main stages

� EC_CreateListTypeWitteSleutel executes createFileCounterList.sh, which filters the temporary file
(created by the evaluator in the level 2 sequence) on the job implementation to be processed (in this
case PRTRT_LOAD_HARDCODED_TYPE_WITTE_SLEUTEL) and creates a comma separated list with
the results.

� if the list is not empty, JA_PRTRT_LOAD_HARDCODED_TYPE_WITTE_SLEUTEL executes the job
PRTRT_LOAD_HARDCODED_ TYPE_WITTE_SLEUTEL and then
JA_TECH_CONSOL_LOAD_TABLE_HARDCODED_TYPE_WITTE_SLEUTEL the consolidator
TECH_CONSOL_LOAD_TABLE.

� if needed, the preceding steps are repeated for other tables and corresponding specific jobs.

 Herakles

©2009 Siemens IT Solutions and Services -114/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_4_PRTRT_PIVOT_KBOBCE_CODE_GENERAL

This level 4 sequence encapsulates the execution of a generic job.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

Main stages

� JA_TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE_GENERAL, evaluates the functional jobs
and corresponding targets for a specific job implementation (see
TECH_EVAL_TARGET_PRTRT_PIVOT_KBOBCE_CODE_GENERAL).

� if the previous job succeeds, EC_CreateList calls createCounterList.sh, which creates a comma
separated list, and, if it is not empty, presents it to the SLA_Pivot loop.

� a user variable activity provides one by one the source and target to the job activity
JA_PRTRT_PIVOT_KBOBCE_CODE_GENERAL, which calls the corresponding job.

� the loop (ELA_Pivot - SLA_Pivot) continues until all input values are processed.

� if the list is empty or the loop has ended, the flow is stopped (SANY_End).

 Herakles

©2009 Siemens IT Solutions and Services -115/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_4_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE

This level 4 sequence encapsulates the execution of a generic job.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

Main stages

� JA_TECH_EVAL_TARGET_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE, evaluates the functional
jobs and corresponding targets for a specific job implementation (see
TECH_EVAL_TARGET_PRTRT_LOAD_PLDA_CT_CODE_TABLE_TYPE).

� if the previous job succeeds, EC_CreateList calls createCounterList.sh, which creates a comma
separated list, and, if it is not empty, presents it to the SLA_Pivot loop.

� a user variable activity provides one by one the source and target to the job activity
JA_PRTRT_ LOAD_PLDA_CT_CODE_TABLE_TYPE, which calls the corresponding job.

� the loop (ELA_Pivot - SLA_Pivot) continues until all input values are processed.

� if the list is empty or the loop has ended, the flow is stopped (SANY_End).

 Herakles

©2009 Siemens IT Solutions and Services -116/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.4.2. TRANSL

SEQ_1_TRANSL

This sequence is the unique sequence of the target centric step TRANSL.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� JA_TECH_EVAL_LOAD_NOSRC evaluates all the load ids that have to be processed (see
TECH_EVAL_LOAD_NOSRC). The goal of this evaluator is to freeze the list of load ids that will be
processed by a given occurrence of this sequence.

� the job activities JA_SEQ_2_IDENT_PERS, JA_SEQ_2_IDENT_BIEN, JA_SEQ_2_IDENT_MANUEEL,
JA_SEQ_2_MREF_GENERIC, JA_SEQ_2_MREF_CONTACT and JA_SEQ_2_MREF_SPECIFIC call
the corresponding level 2 sequences in a serial mode, to avoid overloading the system and risking a
timeout.

 Herakles

©2009 Siemens IT Solutions and Services -117/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

� if any level 2 sequence fails the chain is broken and JA_TECH_CONSOL_ALL_COND negatively (status
got by the RA_GetUserStatus) consolidates all load ids (see TECH_CONSOL_ALL_COND).

� if all level 2 sequences are successful, the generated identification and referential datasets for all load
ids are ready to be processed by the corresponding LOAD_DWH jobs. For this purpose
EC_MoveSA2Outbox copies these datasets to the SA outbox, by calling moveSA2OutboxTransl.sh.
After this copy, JA_TECH_CONSOL_ALL_COND positively (status got by the RA_GetUserStatus)
consolidates all load ids (see TECH_CONSOL_ALL_COND).

 Herakles

©2009 Siemens IT Solutions and Services -118/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_IDENT_PERS

This sequence is a typical example of a level 2 sequence for the identification part of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� JA_TECH_EVAL_TARGET_TRANSL evaluates all the input signature instances, the job
implementations that process them and the corresponding instances and targets (see
TECH_EVAL_TARGET_TRANSL).

� if the previous job succeeds, the different level 3 sequences for identification of persons are called
sequentially. These sequences split the identification jobs logically, for readability and maintainability
reasons.

 Herakles

©2009 Siemens IT Solutions and Services -119/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_IDENT_MANUEEL

This sequence is an exception for level 2 sequences for the identification part of the TRANSL step. Since the
manual identification only consists of one job, there was no need to create level 2 subsequences.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� JA_TECH_EVAL_TARGET_TRANSL evaluates all the input signature instances, the job
implementations that process them and the corresponding instances and targets (see
TECH_EVAL_TARGET_TRANSL).

� if the previous job succeeds, EC_CreatFileCounterList_Load calls createFileCounterList.sh, which filters
the temporary file created by the evaluator on the job to be run (in this case IDENT_LOAD_MANUEEL)
and creates a comma separated list with the result. If this list is not empty, it is presented to the loop
SLA_IDENT_LOAD_MANUEEL.

� a user variable activity provides one by one the signature instances, job implementations, targets and
instances to EC_MoveNewToCurrent that call moveNew2Current.sh to move the implied state
(A0102_EXTERNE_IDENTIFICATIE_MANUEEL_PERSONNE), and to the job activity
JA_IDENT_LOAD_MANUEEL, which calls the corresponding job.
If the moves fail the error is raised (RA_RaiseMoveFailed) and the sequence terminates
(SANY_SequenceDone).

� the loop (SLA_IDENT_LOAD_MANUEEL – ELA_IDENT_LOAD_MANUEEL continues until all input
values are processed.

� when the list is empty or when the loop terminates (SANY_IdentManueelDone) or when the
EC_MoveNewToCurrent fails, the sequence terminates (SANY_SequenceDone).

 Herakles

©2009 Siemens IT Solutions and Services -120/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_MREF_CONTACT

This sequence is the unique level 2 sequence for the contact part of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� JA_TECH_EVAL_TARGET_TRANSL evaluates all the input signature instances, the job
implementations that process them and the corresponding instances and targets (see
TECH_EVAL_TARGET_TRANSL).

� if the previous job succeeds, the processing of addresses, telephone contacts and electronic contacts
are started in parallel via job activities calling the corresponding level 3 sequence. For addresses, some
referential tables (languages, countries, cities, streets) are processed in a serial mode, before
processing the addresses self. The processing of diplomatic posts follows the processing of addresses,
because they are also dependant of countries.

 Herakles

©2009 Siemens IT Solutions and Services -121/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_MREF_GENERIC

This sequence is the unique level 2 sequence for the generic referential tables of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

 Herakles

©2009 Siemens IT Solutions and Services -122/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_TARGET_TRANSL evaluates all the input signature instances, the job
implementations that process them and the corresponding instances and targets (see
TECH_EVAL_TARGET_TRANSL).

� if the previous job succeeds, the different LOAD’s of generic referential tables are started in parallel,
each followed by the corresponding TKSEARCH(’es), also in parallel. These LOAD’s and TKSEARCH’es
are started via job activities calling the corresponding level 3 sequences.

 Herakles

©2009 Siemens IT Solutions and Services -123/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_MREF_SPECIFIC

This sequence is the unique level 2 sequence for the specific referential tables of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� JA_TECH_EVAL_ TARGET_TRANSL evaluates for a certain load id all the input signature instances,
the job implementations that process them and the corresponding instances and targets (see
TECH_EVAL_TARGET_TRANSL).

� if the previous job succeeds, the processing of all the specific referential tables are started in parallel via
job activities calling the corresponding level 3 sequences.

 Herakles

©2009 Siemens IT Solutions and Services -124/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_IDENT_NPP

This sequence is a typical example of a level 3 sequence for the identification part of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� EC_CreatFileCounterList_Load calls createFileCounterList.sh, which filters the temporary file created by
the evaluator on the job to be run (in this case IDENT_LOAD_NPP_RRNN) and creates a comma
separated list with the result. If this list is not empty, it is presented to the loop SLA_IDENT_LOAD.

� a user variable activity provides one by one the signature instances, job implementations, targets and
instances to the EC_MoveNewToCurrent_Load_Wit and EC_MoveNewToCurrent_Load_Grijs that call

 Herakles

©2009 Siemens IT Solutions and Services -125/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

moveNew2Current.sh to move the implied states
(A0102_EXTERNE_IDENTIFICATIE_WIT_PERSONNE_PHYSIQUE and
A0102_EXTERNE_IDENTIFICATIE_GRIJS_PERSONNE_PHYSIQUE respectively), and to the job
activity JA_IDENT_LOAD_NPP_RRNN, which calls the corresponding job.
If any of the moves fails (SANY_MoveFailed), the error is raised (RA_RaiseMoveFailed) and the
sequence terminates (SANY_SequenceDone).

� the loop (SLA_IDENT_LOAD – ELA_IDENT_LOAD continues until all input values are processed.

� when the list is empty or when the loop terminates (SANY_IdentLoadDone), the same processing is
applied for the IDENT_LOAD of STIR (IDENT_LOAD_NPP_RRNN_STIR and
IDENT_LOAD_NPP_STIR_DOSSIER_UNIQUE and for the IDENT_TKSEARCH_NPP_RRNN).

 Herakles

©2009 Siemens IT Solutions and Services -126/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_MREF_CONTACT_ADRESSE

This sequence is a typical example of a level 3 sequence for the contact part of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� EC_CreatFileCounterList_Load calls createFileCounterList.sh, which filters the temporary file created by
the evaluator in the level 2 sequence, on the job to be run (in this case
MREF_TKSEARCH_CONTACT_ADRESSE) and creates a comma separated list with the result. If this
list is not empty, it is presented to the loop SLA_TKSEARCH_CONTACT_ADRESSE.

� a user variable activity provides one by one the signature instances, job implementations, targets and
instances to the different EC_MoveNewToCurrent_* that call moveNew2Current.sh to move the implied
states and to the job activity JA_TKSEARCH_CONTACT_ADRESSE, which calls the corresponding job.
If any of the moves fails (SANY_MoveFailed), the error is raised (RA_RaiseMoveFailed) and the
sequence terminates (SANY_AllDone).

� the loop (SLA_TKSEARCH_CONTACT_ADRESSE – ELA_TKSEARCH_CONTACT_ADRESSE
continues until all input values are processed.

� when the list is empty or when the loop terminates (SANY_Done), the sequence terminates
(SANY_AllDone).

 Herakles

©2009 Siemens IT Solutions and Services -127/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_MREF_CONTACT_Y0101_CODE_PAYS

This sequence is a typical example of a level 3 sequence for a specific referential table part of the TRANSL
step. If the processing of contact is dependent of the specific referential table, the sequence will be called in
the context of the contact part of the TRANSL (SEQ_2_ MREF_CONTACT calling for example
SEQ_3_MREF_CONTACT_Y0101_CODE_PAYS), otherwise it will be called in the context of the specific
referential tables (SEQ_2_MREF_SPECIFIC calling for example
SEQ_3_MREF_SPECIFIC_Y0217_CODE_TOELATING).

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� EC_CreatFileCounterList_Load calls createFileCounterList.sh, which filters the temporary file created by
the evaluator on the job to be run (in this case MREF_LOAD_ Y0101_CODE_PAYS) and creates a

 Herakles

©2009 Siemens IT Solutions and Services -128/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

comma separated list with the result. If this list is not empty, it is presented to the loop
SLA_MREF_LOAD.

� a user variable activity provides one by one the signature instances, job implementations, targets and
instances to the EC_MoveNewToCurrent_Load that calls moveNew2Current.sh to move the implied
state (Y0101_CODE_PAYS_T2), and to the job activity JA_MREF_LOAD_Y0101_CODE_PAYS, which
calls the corresponding job.
If the move fails (SANY_MoveFailed), the error is raised (RA_RaiseMoveFailed) and the sequence
terminates (SANY_SequenceDone).

� the loop (SLA_MREF_LOAD – ELA_MREF_LOAD continues until all input values are processed.

� when the list is empty or when the loop terminates (SANY_MrefLoadDone), the same processing is
applied for the MREF_TKSEARCH.

 Herakles

©2009 Siemens IT Solutions and Services -129/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_MREF_GENERIC_LOAD_ACRONYM

This sequence is a typical example of a level 3 sequence for a generic referential table of the TRANSL step.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� EC_CreatFileCounterList_Load calls createFileCounterList.sh, which filters the temporary file created by
the evaluator in the level 2 sequence, on the job to be run (in this case MREF_LOAD_ACRONYM) and
creates a comma separated list with the result. If this list is not empty, it is presented to the loop
SLA_MREF_GENERIC.

� a user variable activity provides one by one the signature instances, job implementations, targets and
instances to the EC_MoveNewToCurrent that call moveNew2Current.sh to move the implied state and to
the job activity JA_MREF_GENERIC, which calls the corresponding job.
If the moves fails (SANY_Continue), the error is raised (RA_RaiseMoveFailed) and the sequence
terminates (SANY_SequenceDone).

� the loop (SLA_MREF_GENERIC - ELA_MREF_GENERIC continues until all input values are processed.

� when the list is empty or when the loop terminates (SANY_Done), the sequence terminates
(SANY_SequenceDone).

 Herakles

©2009 Siemens IT Solutions and Services -130/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.4.3. TRANSF_SRC

SEQ_1_TRANSF_KBOBCE

This sequence is a typical example of a level 1 TRANSF sequence and has the same structure as the
corresponding EXTRC sequence..

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

 Herakles

©2009 Siemens IT Solutions and Services -131/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_LOAD, evaluates the load ids that have to be processed for the source (see
TECH_EVAL_LOAD).

� if the previous job succeeds, EC_CreateList calls createCounterList.sh, which creates a comma
separated list, and, if it is not empty, presents it to the SLA_LoadID loop.

� a user variable activity provides one by one the load id and extraction date to the job activity
JA_SEQ_2_TRANSF_KBOBCE, which calls the corresponding level 2 sequence.

� once the SEQ_2_EXTRC_ KBOBCE terminates, a consolidation is performed through the job activity
JA_TECH_CONSOL_LOAD (see TECH_CONSOL_LOAD).

� RA_GetUserStatus retrieves the consolidated status of the level 2 sequence and its consolidator. If both
succeed, the flow continues by looping into the ELA_LoadID and SLA_LoadID until all load ids are
processed.

� if an error is detected or the loop has ended, the flow is stopped (SANY_End).

 Herakles

©2009 Siemens IT Solutions and Services -132/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_TRANSF_KBOBCE

This sequence is a typical example of a level 2 TRANSF sequence. It also has the same structure as a level
2 EXTRC sequence.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

 Herakles

©2009 Siemens IT Solutions and Services -133/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_LOAD_TABLE evaluates the table that have to be processed for the load id (see
TECH_EVAL_LOAD_TABLE).

� if the previous job succeeds, EC_CreatFileCounterList_FeKbo calls createFileCounterList.sh, which
filters the temporary file created by the evaluator on the table to be processed (in this case FEKBO) and
creates a comma separated list with the result. If this list is not empty,
JA_SEQ_3_TRANSF_KBOBCE_FEKBO calls the corresponding level 3 sequence.

� once the level 3 sequence terminates, a consolidation is done through the job activity
JA_TECH_CONSOL_LOAD_TRANSF_TABLE_FEKBO (see TECH_CONSOL_LOAD_TABLE).

 Herakles

©2009 Siemens IT Solutions and Services -134/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_TRANSF_KBOBCE_FEKBO

This sequence is a typical example of a level 3 TRANSF sequence, responsible for the effective job
executions and taking into account the dependencies between jobs.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� PARLoadID: load id

� PARLoadDate: extraction date

Main stages

� The MERGE_RECID and LOAD_PREP jobs are executed for each table. This implementation is serial,
to avoid overloading the system and risking a timeout.

 Herakles

©2009 Siemens IT Solutions and Services -135/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.4.4. LOAD_SA

After the TRANSF step, the data has been projected (by the LOAD_PREP’s) onto the different targets.
These targets correspond with classes defined in the conceptual (Together) data model with the exception of
classes that serve for reference or identification (see 3.3.4.2 TRANSL).

The goal of the LOAD_SA jobs is to integrate this information, originating from different sources into the
target Classes (by means of state files) applying prioritisation (for dimensions) or chaining (for bridges) and
determine what records should be updated so that they may be loaded into the DWH by the LOAD_DWH
jobs.

Although the data is generated by different sources, uniformly projecting them in the LOAD_PREP’s allows
for a uniform treatment by the LOAD_SA. The existence of different types of relationships between the
classes in the conceptual data model however, introduces a number of implicit technical constraints.

· Inheritance Constraint: the parent - child inheritance relation (e.g. A0101_PERSONNE-
A0301_PERSONNE_MORALE) requires that any record that is present in the child class has a
corresponding entry in the parent class. This implies that the LOAD_SA job of a child class should
generate an output dataset containing the added/changed records that have to be incorporated in the
parent class.

· TKT2-link Constraint: the one-to-many relation that exists between classes and that in some cases has
both the TK as well as the TKT2 link in the logical data model (e.g. A0301_PERSONNE_MORALE to
A0108_ACTIVITEIT) introduces a dependency in the order of loading since it implies that the class on
the “one”-side of the relationship be loaded before the one on the “many”-side. Please note that,
because of the structure of the entire ETL-chain, this dependency is strictly related to the coupling at
TKT2-level. If their where only a TK coupling, there would be no constraint in the order of execution
related to these relations.

· Role Synchronisation Constraint: for a number of associative classes (bridge classes), one of the
links towards a reference-class indicates the “role” of the association. It is insufficient to identify this role
based on the incoming technical key since the value of this key could change without changing the
actual interpretation (e.g. dated reference tables with changing description.) The identification of the role
should rather be based on the natural key so that the same roles will always be treated in the same
manner. For this, the state file of that reference class is needed in order to look up the natural key (only
the technical key is available after the TRANSL sequence). This introduces the need for a
synchronisation between outbox and staging area as discussed in a previous section (see 3.3.2.7
Synchronisation).

These types of relations and their nuances are the main reason for which the LOAD_SA jobs are not all
exactly the same in structure and detailed functionality. Basically, the different classes that have a
LOAD_SA job can be divided into 2 main categories, dimensions (e.g. A0301_PERSONNE_MORALE) and
bridges (e.g. A0108_ACTIVITEIT). The dimension implementations have to be able to support the
inheritance constraint and the TKT2 link constraint although not all dimensions will suffer from both
constraints (e.g. A0301_PERSONNE_MORALE has only the inheritance constraint to support while
A0202_PERSONNE_PHYSIQUE_ENTREPRISE also suffers from the TKT2 link constraint).

The bridges have to take into account the TKT2 link constraint and the role constraint. There might be some
exceptions where one of these constraints is not applicable and in future iterations there may also be an
associative class that is an extension from a parent class so that it would also have to take the inheritance
constraint into account.

 Herakles

©2009 Siemens IT Solutions and Services -136/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_1_LOAD_SA

This sequence is the unique level 1 sequence of the target centric step LOAD_SA.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

 Herakles

©2009 Siemens IT Solutions and Services -137/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Main stages

� JA_TECH_EVAL_TARGET_LOAD_SA evaluates all the input signature instances, the job
implementations that process them and the corresponding load ids, instances and targets that are ready
for the LOAD_SA (see TECH_EVAL_TARGET_LOAD_SA).

� JA_SEQ_2_LOAD_SA_DIM, JA_SEQ_2_LOAD_SA_BRIDGE and JA_SEQ_2_LOAD_SA_FACT
execute the corresponding level 2 sequences sequentially.

� if any level 2 sequence fails (SALL_DimFailed, SALL_BridgeFailed or SALL_FactFailed, followed by
SANY_Failed), the chain is broken and JA_TECH_CONSOL_ALL_COND negatively (status got by the
RA_GetUserStatus) consolidates all load ids (see TECH_CONSOL_ALL_COND).

� if the SEQ_2_LOAD_SA_DIM succeeds, EC_EvalOutbox2SA calls evalOutbox2SA.sh before calling the
SEQ_2_LOAD_SA_BRIDGE and EC_ConsolSA2Oubox calls consolOutbox2SA.sh when this level 2
sequence terminates.

� if all level 2 sequences are successful (SALL_AllDone), the generated load_sa datasets are ready to be
processed by the corresponding LOAD_DWH jobs. For this purpose EC_MoveSA2Outbox moves these
datasets to the SA outbox, by calling moveSA2OutboxLoadSA.sh. After this move,
JA_TECH_CONSOL_ ALL_COND positively (status got by the RA_GetUserStatus) consolidates all load
ids (see TECH_CONSOL_ALL_COND).

 Herakles

©2009 Siemens IT Solutions and Services -138/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_SA_DIM

This sequence splits, for readability and maintainability reasons, the processing of the dimensions per
subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� per subject, one job activity JA_SEQ_3_LOAD_SA_<SUBJECT>_DIM calls the corresponding level 3
sequence.

� the sequence is successful (SALL_DoneOK) only if all subsequences are successful

 Herakles

©2009 Siemens IT Solutions and Services -139/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_SA_BRIDGE

This sequence splits, for readability and maintainability reasons, the processing of the bridge tables per
subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� per subject, one job activity JA_SEQ_3_LOAD_SA_<SUBJECT>_BRIDGE calls the corresponding level
3 sequence.

� the sequence is successful (SALL_DoneOK) only if all subsequences are successful.

 Herakles

©2009 Siemens IT Solutions and Services -140/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_SA_FACT

This sequence splits, for readability and maintainability reasons, the processing of the fact tables per subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� per subject, one job activity JA_SEQ_3_LOAD_SA_<SUBJECT>_FACT calls the corresponding level 3
sequence.

� the sequence is successful (SALL_DoneOK) only if all subsequences are successful.

 Herakles

©2009 Siemens IT Solutions and Services -141/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_SA_A_DIM

This sequence is a typical example of a level 3 LOAD_SA sequence processing the dimensions of a subject.

 Herakles

©2009 Siemens IT Solutions and Services -142/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� per dimension, one job activity JA_SEQ_4_LOAD_SA_<DIMENSION> calls the corresponding level 4
sequence.

� the level 4 sequences are executed in parallel or in series, according to the dependencies that exist
between them.

� in this specific example the evaluator TECH_EVAL_TARGET_LOAD_SA has to be called again before
the processing of the dimension A0101_PERSONNE, because its child tables generate new inputs for it.

� if any level 4 sequence fails (SANY_*_Failed), the chain is broken and the sequence terminates with an
error user status.

 Herakles

©2009 Siemens IT Solutions and Services -143/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_SA_A_BRIDGE

This sequence is a typical example of a level 3 LOAD_SA sequence processing the bridge tables of a
subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� per dimension, one job activity JA_SEQ_4_LOAD_SA_<BRIDGE> calls the corresponding level 4
sequence.

� in the implementation the level 4 sequences are executed in series, to avoid the overloading of the
system and risking a timeout.

� if any level 4 sequence fails (SANY_Done_Failed), the chain is broken and the sequence terminates
with an error user status.

 Herakles

©2009 Siemens IT Solutions and Services -144/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_SA_B_FACT

This sequence is a typical example of a level 3 LOAD_SA sequence processing the fact tables of a subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� per dimension, one job activity JA_SEQ_4_LOAD_SA_<FACT> calls the corresponding level 4
sequence.

� in the implementation the level 4 sequences are executed in series, to avoid the overloading of the
system and risking a timeout.

� if any level 4 sequence fails (SANY_Done_Failed), the chain is broken and the sequence terminates
with an error user status.

 Herakles

©2009 Siemens IT Solutions and Services -145/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_4_LOAD_SA_A0304_ACTE

This sequence is a typical example of a level 4 LOAD_SA sequence, responsible for the effective job
execution.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

Main stages

� EC_CreatFileCounterList_Load calls createFileCounterList.sh, which filters the temporary file created by
the evaluator in the level 1 sequence or level 3 sequence in case of re-evaluation, on the job to be run
(in this case IDENT_LOAD_NPP_RRNN) and creates a comma separated list with the result. If this list
is not empty, it is presented to the loop SLA_A0304_ACTE.

� before starting the loop, EC_moveNewToCurrent_A0304 calls moveNew2Current.sh to move the
corresponding LOAD_SA state and EC_removeTmpDataset_A0304 calls removeTmpDataset.sh to
remove any temporary dataset created by a previous run of this sequence. This temporary dataset is the
result of the concatenation of all inputs of the LOAD_SA job. This concatenation takes place for a
performance reason: the job has to be started only one time to process all its inputs.

� the loop SLA_A0304_ACTE – ELA_A0304_ACTE is only intended to concatenate the inputs of the
LOAD_SA job, by calling the TECH_CONCAT job with the parameters furnished by the
createFileCounterList.sh and retrieved via the UVA_GetTargetAndInstance_Load user variable activity.

 Herakles

©2009 Siemens IT Solutions and Services -146/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

� when the loop terminates, JA_LOAD_SA_A0304_ACTE calls the corresponding job, the success of the
job is evaluated by the watchdog and the sequence terminates.

removeTmpDataset.sh

This script removes a temporary dataset.

Parameter(s)

� name of the signature

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script locates the temporary dataset in the signature directory, on the basis of the signature name and
‘_TMP.ds’ suffix. If the dataset exists, the script removes it with an orchadmin delete command.

TECH_CONCAT / TECH_CONCAT_MULTIPLE

This job concatenates its input dataset to an already existing temporary dataset.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� PARLoadID: load id

� PARJobName: job (only for TECH_CONCAT_MULTIPLE. For TECH_CONCAT, the job name is derived
from the instance).

� PARInstance: instance

� PARTarget: target

Main stages

� DS_Target_PREP reads input dataset runtime column propagation is used to pass the data to the
column generator stage CGN_AddInstance.

� CGN_AddInstance adds a column T_I_INST to contain PARInstance.

� the output stage DS_Target_PREP_TMP is configured to append the content of the input stream to the
existing temporary dataset.

 Herakles

©2009 Siemens IT Solutions and Services -147/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.3.5. Datawarehouse

3.3.5.1. LOAD_DWH

SEQ_1_LOAD_DWH

This sequence is the unique level 1 sequence of the target centric step LOAD_DWH.

 Herakles

©2009 Siemens IT Solutions and Services -148/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARDropDeadTime: latest acceptable time to load the DWH

� $PARSARRetention: period in days after which the contents of some SAR tables is purged

� $PARRowCommit: row commit when updating DB

Main stages

� EC_EvalLoadDWH evaluates the load ids to be loaded (see evalLoadDWH.sh).

� if some load ids are to be processed, EC_Preprocessing calls loadDWHPreprocessing.sh -
loadDWHPreProcessing.tpl to perform possible pre-processing DB tasks and EC_EvalOutbox2DWH
calls evalOutbox2DWH.sh for the synchronisation with the SA outbox

� if all previous commands are successful, the sequence starts in series the processing of the referential
tables, the identification tables, the dimensions, bridge and fact tables, by calling the corresponding level
2 sequences.

� if any level 2 sequence fails (SALL_RefFailed, SALL_IdentFailed SALL_DimFailed, SALL_BridgeFailed
or SALL_FactFailed, followed by SANY_Failed), the chain is broken and EC_ConsolLoadDWH_Failed
negatively consolidates all load ids (see consolLoadDWH.sh).

� if all level 2 sequences are successful (SALL_RefOK, SALL_IdentOK SALL_DimOK, SALL_BridgeOK
and SALL_FactOK), EC_ConsolLoadDWH_OK positively consolidates all load ids (see
consolLoadDWH.sh) and EC_Clean calls clean.sh to clean the temporary files and datasets and purge
the SAR tables.

� the success and failure paths are merged again (SANY_AllDone) and EC_ConsolOutbox2DWH calls
consolOutbox2DWH.sh for the synchronisation with the SA outbox and EC_Postprocessing calls
loadDWHPostprocessing.sh - loadDWHPostProcessing.tpl to perform possible post-processing DB tasks

� SANY_Done terminates the sequence.

 Herakles

©2009 Siemens IT Solutions and Services -149/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_DWH_DIM

This sequence splits, for readability and maintainability reasons, the processing of the dimensions per
subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per subject, one job activity JA_SEQ_3_LOAD_DWH_<SUBJECT>_DIM calls the corresponding level 3
sequence. In this implementation, the sequences are executed in parallel, because the underlying jobs
are quite light and until now do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -150/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_DWH_BRIDGE

This sequence splits, for readability and maintainability reasons, the processing of the bridge tables per
subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per subject, one job activity JA_SEQ_3_LOAD_DWH_<SUBJECT>_BRIDGE calls the corresponding
level 3 sequence. In this implementation, the sequences are executed in parallel, because the underlying
jobs are quite light and do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -151/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_DWH_FACT

This sequence splits, for readability and maintainability reasons, the processing of the fact tables per subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per subject, one job activity JA_SEQ_3_LOAD_DWH_<SUBJECT>_FACT calls the corresponding level
3 sequence. In this implementation, the sequences are executed in parallel, because the underlying jobs
are quite light and do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -152/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_DWH_IDENT

The level 2 sequence executes the jobs for the identification tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� job activities call the different jobs. Some of them are executed in serial mode to avoid DB-locking,
because they access the same tables. If they do not access the same tables, they are executed in
parallel, because they are quite light and do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -153/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_DWH_REF

This level 2 sequence splits the processing of referential tables into three categories: generic referential
tables, specific referential tables and contact tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per category, one job activity JA_SEQ_3_LOAD_DWH_REF_<CATEGORY> calls the corresponding
level 3 sequence. In this implementation, the sequences are executed in parallel, because the underlying
jobs are quite light and do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -154/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_DWH_A_DIM

This level 3 sequence executes the jobs for the dimensions of a subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per dimension, one job activity JA_LOAD_DWH_<DIMENSION> calls the corresponding job. In this
implementation, the jobs are executed in parallel, because these jobs are quite light and do not overload
the machine.

 Herakles

©2009 Siemens IT Solutions and Services -155/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_DWH_A_BRIDGE

This level 3 sequence executes the jobs for the bridge tables of a subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per dimension, one job activity JA_LOAD_DWH_<BRIDGE> calls the corresponding job. In this
implementation, the jobs are executed in parallel, because these jobs are quite light and do not overload
the machine.

 Herakles

©2009 Siemens IT Solutions and Services -156/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_DWH_B_FACT

This level 3 sequence executes the jobs for the fact tables of a subject.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per dimension, one job activity JA_LOAD_DWH_<FACT> calls the corresponding job. In this
implementation, the jobs are executed in parallel, because these jobs are quite light and do not overload
the machine.

 Herakles

©2009 Siemens IT Solutions and Services -157/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_DWH_REF_CONTACT

This level 3 sequence executes the jobs for the contact tables and associated specific referential tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per table, one job activity JA_LOAD_DWH_<TABLE> calls the corresponding job. In this implementation,
the jobs are executed in parallel, because these jobs are quite light and do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -158/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_DWH_REF_GENERIC

This level 3 sequence processes the generic referential tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� JA_ TECH_EVAL_TARGET_LOAD_DWH_REF evaluates the information needed for the execution of
the generic LOAD_DWH referential jobs, i.e. the job implementations and the corresponding targets, with
their natural and technical key names (see TECH_EVAL_TARGET_LOAD_DWH_REF).

� if the previous job succeeds, the job activities JA_SEQ_4_LOAD_DWH_REF_GENERIC_* call the
corresponding level 4 sequences that process the different types of generic referential tables. In this
implementation, the sequences are executed in parallel, because the underlying jobs are quite light and
do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -159/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_LOAD_DWH_REF_SPECIFIC

This level 3 sequence executes the jobs for the specific referential tables.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� per table, one job activity JA_LOAD_DWH_<TABLE> calls the corresponding job. In this implementation,
the jobs are executed in parallel, because these jobs are quite light and do not overload the machine.

 Herakles

©2009 Siemens IT Solutions and Services -160/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_4_LOAD_DWH_REF_GENERIC_ACRONYM

This level 4 sequence is one of the sequences that executes the jobs for the generic referential tables. The
other ones have exactly the same structure.

Parameter(s)

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARRowCommit: row commit when updating DB

Main stages

� EC_CreatFileCounterList_Acro calls createFileCounterList.sh, which filters the temporary file created by
the evaluator in the level 3 sequence, on the job to be run (in this case
LOAD_DWH_REF_GENERIC_ACRONYM_DATE) and creates a comma separated list with the result.
If this list is not empty, it is presented to the loop SLA_Acro.

� a user variable activity provides one by one the job implementations and the targets with their natural
and technical key names to the job activity JA_LOAD_DWH_GENERIC_CRONYM_DATE, which calls
the corresponding job.

� the loop (SLA_Acro – ELA_Acro) continues until all input values are processed.

� when the list is empty or when the loop terminates (SANY_End), the sequence terminates.

 Herakles

©2009 Siemens IT Solutions and Services -161/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

3.4. Configuration and roll-out

The configuration of the Herakles environment is done at several levels:

1. via the project parameters:

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

� $PARServerDWH: server of the data warehouse

� $PARInstanceDWH: instance of the data warehouse

� $PARSchemaDWH: schema of the data warehouse

� $PARDropDeadTime: latest acceptable time to load the DWH

� $PARSARRetention: period in days after which the contents of some SAR tables is purged

� $PARNumberOfReaders: number of readers when reading big flat files

� $PARRowCommit: row commit when updating DB

2. via the HERA_GlobalMessageHandler: A message handler permits to demote an error or warning
message to a lower level, e.g. informational. In Herakles, only one message (a partitioning warning when
entering a transformer) has been demoted to informational, because it never produces problem and no
work around was possible to avoid the warning.

3. /Herakles/StagingArea/Work/etc files, described in 3.1.3.3.6 etc directory

The rollout of the environment is also done at several levels:

1. at database level: creation of the staging area and data warehouse databases

2. at Unix level, copy of the script, configuration,… files

3. via some DataStage jobs and sequences described hereafter.

These jobs are very simple and do not need much explanation. They all have the same parameters:

� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

� $PARServerSA: server of the staging area DB

� $PARInstanceSA: instance of the staging area DB

� $PARSchemaSA: schema of the staging area DB

excepted the INIT jobs, which only have the following parameters:
� $APT_CONFIG_FILE: configuration file

� $PARHeraWork: working directory of the Herakles project

 Herakles

©2009 Siemens IT Solutions and Services -162/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

LOAD_FRAMEWORK_REPO

 Herakles

©2009 Siemens IT Solutions and Services -163/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

LOAD_FRAMEWORK_REPO_0200

 Herakles

©2009 Siemens IT Solutions and Services -164/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

LOAD_FRAMEWORK_REPO_0300

These jobs load all staging area SAD tables, the SAC_CONVERSION_TABLE and the
SAR_SYNCHRONISATIE tables as from Release 1, iteration 1 and iteration, respectively, on the basis of the
flat files stored under the Herakles Work etc directory.

 Herakles

©2009 Siemens IT Solutions and Services -165/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

createFrameworkDirs.sh

On the basis of the SAD tables, this script creates the signatures and jobs directories and subdirectories, and
the symbolic links between both. This script is called in the SEQ_2_LOAD_FRAMEWORK_REPO after the
loading of the framework repository.

Parameter(s)

� instance of the staging area DB
� schema of the staging area DB

Output

N/A

Return code

0 in case of success, <> 0 otherwise

Processing

The script first validates its arguments and defines then a log file to trace its execution.

On the basis of the SAD_SIGNATURE repository table, it creates all the subdirectories in the signatures
directory (see 3.1.3.3.2 Signatures Directory).

On the basis of the SAD_JOB and SAD_UTILISATION tables, it creates all the subdirectories in the jobs
directory (see 3.1.3.3.3 Jobs directory).

Finally it creates in these jobs subdirectories symbolic links to the signatures subdirectories.

 Herakles

©2009 Siemens IT Solutions and Services -166/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

INIT_A0101_PERSONNE

The INIT jobs create empty datasets for the states.

The “_NEW” is created, because a moveNew2Current.sh is always executed at the beginning of the
sequences that call the jobs that use the states.

For the creation of the dataset, the option “Update Policy = Create (Error if exists)” is used to avoid
overwriting an existing non-empty dataset accidentally.

CONVERT_A0101_PERSONNE

The CONVERT jobs convert existing datasets for the states, to a new format. In the example above, an
information is added in the state A0101_PERSONNE, which identifies the origin of the person:
A0201_PERSONNE_PHYSIQUE, A0301_PERSONNE_MORALE,… This information can be used in the
ETL process, for example in the case of sources adding information to existing persons, but without
containing any field permitting to make the distinction between a “personne morale” and a “personne
physique enterprise”.

 Herakles

©2009 Siemens IT Solutions and Services -167/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_1_ROLLOUT, SEQ_1_ROLLOUT_0200,…

The sequence SEQ_1_ROLLOUT calls the sequences SEQ_2_LOAD_FRAMEWORK_REPO and
SEQ_2_INIT_STATE. The sequence SEQ_1_ROLLOUT_0200 does the same with
SEQ_2_LOAD_FRAMEWORK_REPO_0200 and SEQ_2_INIT_STATE_0200 and adds
SEQ_2_CONVERT_SATE_0200. Version 0300, 0400 will be added for each iteration.

 Herakles

©2009 Siemens IT Solutions and Services -168/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_LOAD_FRAMEWORK_REPO, SEQ_2_LOAD_FRAMEWORK_REPO_0200,…

The sequences SEQ_2_LOAD_FRAMEWORK_REPO, SEQ_2_LOAD_FRAMEWORK_REPO_0200,…
execute the jobs LOAD_FRAMEWORK_REPO, LOAD_FRAMEWORK_REPO_0200,… respectively and
then the script createFrameworkDirs.sh.

 Herakles

©2009 Siemens IT Solutions and Services -169/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_INIT_STATE, SEQ_2_INIT_STATE_0200,…

The sequences SEQ_2_INIT_STATE, SEQ_2_INIT_STATE_0200,… start the level 3 sequences that group
the state initialization jobs in function of their type.

 Herakles

©2009 Siemens IT Solutions and Services -170/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_2_CONVERT_STATE_0200,…

The sequences SEQ_2_CONVERT_STATE_0200,… start the level 3 sequences that group the state
conversion jobs in function of their type.

 Herakles

©2009 Siemens IT Solutions and Services -171/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_INIT_STATE_DELTA, SEQ_3_INIT_STATE_DELTA_0200,…

The sequences SEQ_3_INIT_STATE_DELTA, SEQ_3_INIT_STATE_DELTA_0200,… group the state
initialization jobs for delta’s.

 Herakles

©2009 Siemens IT Solutions and Services -172/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_INIT_STATE_IDENT, SEQ_3_INIT_STATE_IDENT_0200,…

The sequences SEQ_3_INIT_STATE_IDENT, SEQ_3_INIT_STATE_IDENT_0200,… group the state
initialization jobs for identifications.

 Herakles

©2009 Siemens IT Solutions and Services -173/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_INIT_STATE_LOAD_SA, SEQ_3_INIT_STATE_LOAD_SA_0200,…

The sequences SEQ_3_INIT_STATE_LOAD_SA, SEQ_3_INIT_STATE_LOAD_SA_0200,… group the state
initialization jobs for load_sa’s.

 Herakles

©2009 Siemens IT Solutions and Services -174/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_INIT_STATE_REF_CONTACT, SEQ_3_INIT_STATE_REF_CONTACT_0200,…

The sequences SEQ_3_INIT_STATE_CONTACT, SEQ_3_INIT_STATE_REF_CONTACT_0200,… group
the state initialization jobs for contacts.

 Herakles

©2009 Siemens IT Solutions and Services -175/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_INIT_STATE_REF_SPECIFIC, SEQ_3_INIT_STATE_REF_SPECIFIC_0200,…

The sequences SEQ_3_INIT_STATE_REF_SPECIFIC, SEQ_3_INIT_STATE_REF_SPECIFIC_0200,…
group the state initialization jobs for specific referential tables.

 Herakles

©2009 Siemens IT Solutions and Services -176/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_INIT_STATE_REF_GENERIC, SEQ_3_INIT_STATE_REF_GENERIC_0200,…

The sequences SEQ_3_INIT_STATE_REF_GENERIC, SEQ_3_INIT_STATE_REF_GENERIC_0200,…
group the state initialization jobs for generic referential tables. It starts the TECH_EVAL_INIT_REF evaluator,
followed by the level 4 sequences SEQ_4_INIT_STATE_REF_ACRONYM and
SEQ_4_INIT_STATE_REF_NO_ACRONYM.

 Herakles

©2009 Siemens IT Solutions and Services -177/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_CONVERT_STATE_IDENT_0200

The sequences SEQ_3_INIT_STATE_IDENT_0200,… group the state conversion jobs for identifications.

 Herakles

©2009 Siemens IT Solutions and Services -178/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_3_CONVERT_STATE_LOAD_SA_0200

The sequences SEQ_3_CONVERT_STATE_LOAD_SA_0200,… group the state conversion jobs for
load_sa’s.

 Herakles

©2009 Siemens IT Solutions and Services -179/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_4_INIT_STATE_REF_ACRONYM, SEQ_4_INIT_STATE_REF_ACRONYM_0200,…

The sequences SEQ_4_INIT_STATE_REF_ACRONYM, SEQ_4_INIT_STATE_REF_ACRONYM_0200,…
call the script createFileCounterList.sh and loops over the returned referential tables of type ACRONYM.

 Herakles

©2009 Siemens IT Solutions and Services -180/180- STDDOC-013 – 01/01/2008
Herakles_Eos_Promethee_GTS_v0300.doc

SEQ_4_INIT_STATE_REF_NOACRONYM, SEQ_4_INIT_STATE_REF_NOACRONYM_0200,…

The sequences SEQ_4_INIT_STATE_REF_NOACRONYM,
SEQ_4_INIT_STATE_REF_NOACRONYM_0200,… call the script createFileCounterList.sh and loops over
the returned referential tables of type NOACRONYM.

